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Hypothesis Testing, Model Selection, and Prediction in Least 
Squares and Maximum Likelihood Estimation 
Greene Ch.5, 14; Kennedy Ch. 4 
R script mod3s2a, mod3s2b, mod3s2c 
 

Testing for Restrictions in a LS Model 

Linear Restrictions 
Assume you have specified a CLRM of the usual form = +y Xβ ε .  Let’s call this the “general” or 
“unrestricted” model.  You may hypothesize that some elements of β are linearly related or constrained to 
take a specific value.  Such constraints are called “linear constraints” or “linear restrictions”.  Here are a 
few examples: 
 
Single value restriction: 
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Single restriction on linear relationships: 
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Multiple restrictions on linear relationships: 
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Mixed linear restrictions: 

1 4

5

3 2

0
1

3

β β
β
β β

− =
=

+ =

 

 
In general, such hypotheses on restrictions arise from competing underlying theoretical models.  For 
example, for our wage regression (see R script mod3s2a), you might hypothesize that a male worker 
earns $3 more than a female worker, ceteris paribus.  This would translate into the following hypothesis: 
 

0 2: 3H β = −   (1) 
 
As a general rule, you should always express a linear constraint such that there is only a numerical value 
left on the right hand side of the equality sign. 
 
In general we can write a set of J linear constraints as 
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or, more compactly as 
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In principle you can test any number of linear restrictions, but you must always obey the following 2 
rules:  
1. J k≤ , i.e. you can’t impose more restrictions than there are coefficients. 
2. The rows of R must be linearly independent, i.e. you can’t have any redundant or conflicting 

restrictions. 
 
Here are a few examples for R and q using the wage data.  Recall the element of X: 
% contents of X 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%1  constant term       
%2  female          1= worker = female 
%3  non-white       1= worker = non-white 
%4  union           1 = worker = unionized 
%5  education       years of education 
%6  experience      years of work experience 
 
So k=6.  
 
Example 1:  
H0: “Female workers earn $3 less than male workers, ceteris paribus” 

[ ]
0 2: 3 1

0 1 0 0 0 0 3
H Jβ = − → =

= = −R q
 

 
Example 2: 
H0:”1 additional year of education is worth 8 additional years of experience” 

[ ]
0 5 6: 8 0 1

0 0 0 0 1 8 0
H Jβ β− = → =

= − =R q
 

 
Example 3: 
H0: “Female workers earn $3 less than male workers, ceteris paribus” AND  
”1 additional year of education is worth 8 additional years of experience” 
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Example 4: 
H0: “Female workers earn $3 less than male workers, ceteris paribus” AND  
”1 additional year of education is worth 8 additional years of experience” AND 
“a unionized worker earns $1 more than a non-unionized worker, cet. par”. 
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Once R and q are explicitly defined, you can compute an F-statistic to implement the test as follows: 
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A random variable that follows the F-distribution has 2 parameters, “Degrees of Freedom for the 
numerator (DoFn)” and “Degrees of Freedom for the denominator (DoFd)”.  The DoFn are always equal 
to the number of restrictions (J), and the DoFd are equal to the sample size minus the number of 
parameters (n-k).  
 
F-Tables with critical values for different DoFs and levels of significance can be readily obtained from 
the internet (see also p. 1096 in Greene's 6th edition).  We’ll use the one for 0.05α = .  In that Table, n1 = 
J, and n2 = n-k.  The table shows “critical values”.  For example, if J = 4 and (n-k) >100, the critical F 
value is 2.37.  If your computed F exceeds this value, you reject H0.  Otherwise don’t reject.  More 
conveniently,  you can directly compute the p-value for your test statistic in R. Then compare the p-value 
to your level of significance and draw your conclusion. 
 
F-test vs. t-test 
For a single restriction t F= , so you can either do an F-test (using the F-table) or a t-test (using the t-
table). Both will always arrive at the same test decision. Recall that both t- and F-statistics require the 
normality assumption for ε in the CLRM. 
 
 
Testing for the inequality of the entire β -vector over two groups: The Chow Test 
 
Often times your data set can be conceptually split into two groups, such as “male / female”, “white / 
nonwhite” for the wage data, or “spin casters / fly fishers” for the angling data, etc.  You may then 
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hypothesize that the marginal effect of all or some of the remaining regressors differs over the two 
groups.  Let’s use the wage data and “white / nonwhite” as an example. 
 
Using the full set of remaining regressors as example, your null and alternative hypothesis could be stated 
as: 
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Ha:  At least one of these equalities doesn’t hold. 
 
Where “w” stands for “white” and “nw” stands for “nonwhite.  In principle, you thus have J=5 restrictions 
and could use an F-test.  The tricky part for a Chow test is in designing the unconstrained model, i.e. a 
model that estimates separate coefficients for these 5 regressors (incl. the constant) for the two race 
groups.  You need to re-construct your y and X as follows: 
 
1. Pick the variables of interest from the original X and group them into a new X (let’s call it Xint for 

now).  Usually these will be all variables in the original X minus the column of ones and the variable 
that originally defined the two groups of interest (here “race”).  

2. Create indicator (dummy variables) for each group.  
3. Create interaction terms between this dummy and Xint. 
4. Estimate a CLRM of  y against the first indicator dummy, its interactions, the opposite indicator 

dummy, and its interactions. Then test for the stated inequalities using an F-test.   
 
Conceptually, the unconstrained model takes the following form (assume that observations have been 
sorted by group – this is not actually needed for estimation): 
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Clearly, if your Ha holds for the entire set of restrictions, this would be equivalent to running two separate 
regression models, one using only data for nonwhite workers, and one using only the sub-sample of white 
workers. 
 
See mod3s2a for the implementation of this example. 

Nonlinear restrictions 
 
To test for nonlinear restrictions on β  in the CLRM we need to invoke asymptotic results.  Specifically, 
we need to apply the Delta Method to derive the estimated asymptotic variance of the restricted 
coefficient or set of coefficients. 
 
Assume we impose e set of J nonlinear restrictions, each of which involves one or more elements of β . 
Using Greene’s (p. 114) notation, we can compactly express the set of restrictions as  
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and q is a J by 1 vector of numerical values, (as for the linear restriction case).  As a first step, we need to 
estimate the asymptotic variance of ( )c β .  By the Delta method, we have 
 

( )( ) ( ) ( )( ) ( )12ˆ ˆ ' where .
Jxk

c
V c V s − ∂

′ ′= = =
′∂
b

b C b C C X X C C
b

 (8) 

Next, we compute a Wald test statistic – essentially the asymptotic version of an F-test. As a general rule, 
we don’t use degrees of freedom based on sample size in asymptotic test statistics.  Thus: 
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The last term indicates that W follows a chi-squared distribution with J degrees of freedom.  The table of 
critical values for this distribution is given on p. 1095 of Greene's 6th edition, or you can easily find it 
online.  In Greene, the column labeled “0.95” corresponds to the 5% level of significance (i.e. 0.05α = ).  
For example, you can see that the critical value for J=1 equals 3.84. 
 
If ( )c =β q  contains only a single restriction, you can alternatively use a z-test as shown on p. 98. The z- 

W relationship is analogous to the t-F case, i.e. for a single restriction we have z W= .  An example of a 
Wald test involving nonlinear restrictions is given in script mod3s2a. 
 
In theory, the Wald test could also be used for linear restrictions, in which case we have 
( )c − = −β q Rβ q as before.  However, in the LS case where the finite properties of b are known the F 

test usually yields more accurate results, especially under small sample sizes.   
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Testing for Restrictions in an MLE Model 
 
There exist three asymptotically equivalent test statistics for MLE estimation.  They differ in the number 
and type of models you need to estimate before you can run a specific test.  Here is a summary: 
 
Test Abbreviation Required estimated 

models 
Distribution of test 
statistic 

Strengths / Limitations 

Likelihood-
Ratio 

LR Constrained & 
unconstrained ( )

2
Jχ  Constrained model 

often difficult to 
estimate;  probably 
most reliable test of 
the three 

Lagrange 
Multiplier 

LM Constrained 
( )

2
Jχ  Constrained model 

often difficult to 
estimate 

Wald W Unconstrained 
( )

2
Jχ  Probably most 

straightforward to 
implement 

LR test 
 
The LR test requires the estimation of both the unconstrained and constrained models.  The test statistic is 
then derived as 
 

( ) ( )( ) ( )
2ˆ ˆ2 ln ln ~ JLR L L χ= −u cθ θ   (10) 

where ( )ˆln L uθ  is the value of the log-likelihood function at the solution for the unconstrained model, 

and ( )ˆln L cθ  is the analogous value for the constrained model.  As before, J indicates the total number of 

joint restrictions to be tested.   
 
The intuition for this test is that if the imposed constraint is correct, the value of lnL for the constrained 
model should be close to that for the unconstrained model (it can never be better, i.e. less negative than 
the lnL for the unconstrained model).  A pronounced difference between the two values would suggest 
that the constraint (or set of constraints) does not hold.  As before, the test decision is based on a 
comparison of the computed LR to the applicable critical value in a chi-squared table.   
 
An example of an LR test is given in mod3s2b. 
 

Wald Test 
 
The Wald test requires estimation results from the unconstrained model. It takes the same form as given 
in (9) with the OLS estimator b replaced by the MLE estimator (say β̂ ), and the estimated asymptotic 

variance of β̂  given by any of the usual approximations, i.e. either the inverted negative Hessian or the 
outer product of gradients.  Thus: 
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If the restrictions are linear ( )ˆc −β q  takes the form of ˆ −Rβ q . 

 
The intuition for the Wald test is that if the hypothesized restrictions are valid ( )ˆc −β q  should be close to 

zero and “W” will be small. A large value for the Wald statistic would raise doubts as to the validity of the 
constraint. 
 

The Lagrange Multiplier (LM) test 
 
The LM test (also known as “score” test) is based on the constrained model and the intuition that if the 
imposed restrictions are correct, the sample gradient (or “score” function) should be close to zero at 
convergence.  Since, by the information matrix identity, the variance of the gradient is equal to the 
information matrix, the test statistic is computed as follows: 

( ) ( )( ) ( )1ˆ ˆ ˆ'LM g I g
−

= β β β   (12) 

where ( )ˆI β  is again estimated by the negative Hessian or the outer product of gradients. 

 
An implementation of the three tests is given in script mod3s2b.  As you can see, the results for the three 
tests can vary substantially under small to moderate sample sizes.  This fact and the sensitivity of test 
statistics to the approximation used for ( )ˆ

âV β  is also illustrated in Greene’s example 14.6.4 (p. 531). 

 
So which test should be used in practice?  In many cases the constrained model is difficult to specify & 
estimate, which makes the LM and LR tests somewhat less popular than the Wald.   
 
The Wald test is also convenient when you have estimated the unrestricted model, and you want to test a 
whole series of hypotheses on different constraints.  Using the LR, you would have to specify & estimate 
a separate restricted model for every set of restrictions.  
 
In practice, if both unconstrained and constrained models are straightforward to estimate, the LR test is 
probably the most trusted approach as the value of the log-LH function at convergence is somewhat less 
sensitive to the choice of  ( )ˆ

âV β  than the other two test statistics. 

 
Ideally, you would perform all three tests & hope that they all point to the same decision rule.  Good luck! 
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Model Selection based on Prediction 
 
As mentioned in Poirier’s “Intermediate Statistics and Econometrics”, p. 405, the topic of prediction is 
somewhat neglected in most econometric textbooks, which focus more on estimation and tests on 
parameters. However, the prediction of yet unobserved outcomes is of central importance when 
econometric analysis is supposed to produce policy recommendations, for example in the context of 
benefit-cost analysis.   
 
We will use the term “prediction” in the general sense of “combining some vector of explanatory values, 
x, with estimated parameters, θ̂ , to generate a point estimate ( )ˆˆ ,y f= x θ  where f may be a linear or 

nonlinear function. (In time series analysis, “prediction” is usually referred to as “forecasting”). 

Within-Sample Prediction and Predictive Accuracy 
The strategy of computing a predicted outcome, ˆiy , based on combining an observed vector xi with 
estimated parameters is called “within sample prediction”.  In contrast, combining estimated parameters 
with a new set of values for the regressors, say px , is called “out-of-sample prediction”.   
 
Hypothesis tests are one approach to select between competing models.  Another criterion relates to the 
predictive accuracy of competing models, i.e. how well the predicted dependent observations (“fitted 
values” in the CLRM context) agree with the actually observed yi’s.  One such measure for the CLRM is 
R2 and its adjusted counterpart. 
 
Another, more generally applicable, criterion is the predictive Mean Squared Error, defined as 
 

( )21
n

1

ˆ
n

i i
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MSE y y
=

= −∑   (13) 

 
Since this number can grow quite large, its square root is generally used instead, leading to the Root Mean 
Squared Error(RMSE).  An alternative criterion is the Mean Absolute Error, given as 
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A smaller value for these measures indicates a better fit with the actual data.  A (minor) problem with the 
RMSE and MAE is that they are not invariant to scaling of y – if y is multiplied by a factor, say α , then 
the RMSE and MAE will also be scaled by α . If a scale-free measure of predictive accuracy is desired, 
the Theil U-statistic can be used: 
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Note that a good fit based on these within-sample predictive statistics does not necessarily imply that the 
chosen model will generate accurate “out of sample” predictions as well. However, a poor fit with actual 
data would certainly raise serious doubts as to the model’s out-of-sample predictive abilities, especially if 
the values in px are “not too different” from other values observed in the sample (e.g. predicting the price 
of a home with 5 bedrooms when the sample includes only homes with 2,3,4, and 6 bedrooms). 
 

Out-of-Sample Prediction and Predictive Efficiency 
 
When we predict out-of-sample we can no longer compare our predicted outcome to an actually observed 
value.  However, we can still compute a standard error and confidence interval for the predicted value, 
and compare models based on the width of this interval.  If two or more competing models produce 
similar point predictions, we would choose the one that generates the tightest confidence interval around 
its point estimate. 
 
Linear predictions 
Assume you are interested in the out-of-sample-predicted value ˆ

py px β′= .  Thus, yp is a linear 
combination of regressor values and estimated coefficients.  A 95% confidence interval can be quickly 
constructed as 
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x β x β x β x β

x β x β x
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Nonlinear predictions 
Now assume your predictive construct of interest is a nonlinear function of regressor values and estimated 
coefficients, i.e. ( )ˆ,py f= px β . The derivation of a 95% confidence interval is as in (16), with ˆ′px β  

replaced by ( )ˆ,f px β , and ( )( )ˆˆ ,aV f px β  derived via the Delta Method.  Alternatively, the entire 

confidence interval can be derived via simulation by drawing multiple sets of β̂  from its asymptotic 

distribution, computing ( )ˆ,f px β  for each draw, and using the 2.5th and 97th percentiles as confidence 

bounds. See script mod3s2c for an example. 
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