
PRE-PROCESSING HOUSING DATA VIA MATCHING: SINGLE MARKET

KLAUS MOELTNER

1. Introduction

In this script we show, for a single housing market, how mis-specification of the hedonic price func-
tion can lead to biased estimates of treatment effects. We also illustrate how pre-processing the
data via matching can alleviate mis-specification problems.

This is because matching breaks the dependence between treatment and other observable variables.
This, in turn, makes it less important how these other variables are controlled for in the hedonic
price function.

2. Data generation

We create a simulated price function for treated (ex.: “in floodzone A”) and untreated (ex.: “in
floodzone X”) properties, using summary statistics from our actual data set as guidance (data set
“Target” in STATA, using homes in A-zones as treated, and homes in X-zones as controls).

We generate three explanatory variables: square footage, bedrooms, and bathrooms. All three
follow closely their distribution in the actual data.

R> nT<-500 #number of treated

R> nC<-5000#number of controls

R> n<-nT+nC

R> norig<-n

R> sqftT<-rtruncnorm(nT,a=600,b=15000,mean=2800,sd=1600)/1000 #in 1000s

R> sqftC<-rtruncnorm(nC,a=300,b=23000,mean=3600,sd=1700)/1000

R> #draw n observations for this truncated normal density and place into an nx1 vector

R> #to see summary stats, type summary(sqftT) in the Console

R> pbedT<-c(0.0444, 0.2611, 0.5098, 0.1528, 0.0249, 0.007)

R> pbedC<-c(0.0136, 0.1458, 0.5243, 0.2764, 0.0332, 0.0067)

R> bedrT<-sample(1:6,nT,replace=TRUE,prob=pbedT)

R> bedrC<-sample(1:6,nC,replace=TRUE,prob=pbedC)

R> #

R> pbathT<-c(0.5507,0.3552,0.0782,0.0159)

R> pbathC<-c(0.3931,0.4555,0.1272,0.0242)

R> bathrT<-sample(1:4,nT,replace=TRUE,prob=pbathT)

R> bathrC<-sample(1:4,nC,replace=TRUE,prob=pbathC)

Now generate the dependent variable using the “true” hedonic price function, which includes a
quadratic for sqft (in units of 1000) and an interaction between bedrooms and bathrooms.

R> sqft<-c(sqftT,sqftC) #stick both samples into one long vector

R> sqft2<-sqft^2
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R> beds<-c(bedrT,bedrC)

R> baths<-c(bathrT,bathrC)

R> bbint<-beds*baths

R> treat<-matrix(c(rep(1,nT),rep(0,nC)))

R> X<-cbind(rep(1,n),sqft,sqft2,beds,baths,bbint,treat)

R> #

R> bvec=c(50,75,-0.5,10,15,5,-25)

R> eps<-rnorm(n,0,25)

R> y<-X %*% bvec+eps #sales price in 000s

R> yorig<-y

R> yT<-y[1:nT]

R> yC<-y[(nT+1):n]

Let’s summarize the data graphically and in a table, for treated, controls, and all observations.

Table 1. summary statistics, treated

variable mean std min max
sqft 3.12 1.40 0.62 8.90
bedrooms 2.87 0.85 1.00 6.00
bathrooms 1.58 0.71 1.00 4.00
price ($000s) 328.66 103.67 80.90 756.68

Table 2. summary statistics, controls

variable mean std min max
sqft 3.76 1.60 0.32 10.11
bedrooms 3.20 0.79 1.00 6.00
bathrooms 1.77 0.75 1.00 4.00
price ($000s) 410.24 119.18 96.71 833.86

3. Checking for balance

Let’s compare the distributions of treated and controls using empirical quantile-quantile (eQQ) -
plots. This is the preferred method of Ho, Imai, King and Stuart (2007) for a “visual balance
check.” This has to be done variable-by-variable. The plot breaks the empirical distribution of a
given variable for treated and controls into equal empirical quantiles, and plots the resulting values
of one group against those of the other.

Specifically, for 2 vectors of equal length, the “qqplot” function in R simply produces a pairwise
plot of all points of the sorted data. For vectors of unequal length, it reduces the (sorted) longer
vector to the same number of points as the shorter vector, using interpolation, then plots the pairs.

This really only works for continuous variables, so here square footage. We will add a QQ plot for
sales price as well, not as a balance check, but simply for comparison. For the remaining integer
variables, a grouped bar chart is probably more meaningful. We can see that the controls have,
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Figure 1. Sample statistics
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Figure 2. QQ and frequency plots for treated vs. controls

overall, larger properties and more expensive homes (percentiles lie below those of the treated).
There are also higher proportions of controls at the upper end of the bedroom and bathroom dis-
tribution. Our goal with matching will be to get the QQ plot as close to the diagonal line as possible.

Sekhon (2011) also uses QQ plots to motivate his genetic search algorithm for balance. A sub-
module of his “Matching” program, called “qqstats” also generates numerical QQ statistics, such as
mean, median, and maximum deviation for equal quantile points.1 We will report these in addition
to standardized differences in means. These are the raw differences in means for a given variable,
divided either by the standard deviation of the treated sample (as used in Ho, Imai, King and
Stuart (2011)) or the weighted standard deviation for the whole sample. The latter produces what
Imbens and Rubin (forthcoming) call normalized differences.2

If the ATT is of primary interest, it makes more sense to normalize by the standard deviation for
the treated. If the ATE is required, normalizing by the weighted full standard deviation is probably
more meaningful. Our focus is on ATT, so we’ll use the former. As can be seen from the table,

normalized distances between means are substantial for all explanatory variables. The same holds
for mean QQ differences. For example, for sqft, a point on the QQ plot is, on average, 610 square

1See also Ho et al. (2007) (ftn.16).
2These authors refer to balance as “overlap.” They suggest that any normalized differences above 0.25 are worrisome.
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Table 3. balance statistics

variable norm.diff mean QQ diff med QQ diff max QQ diff
price -0.787 81.609 82.971 129.843
sqft -0.456 0.647 0.673 1.276
beds -0.383 0.326 0.000 1.000
baths -0.272 0.194 0.000 1.000

feet away form the diagonal line (in fact, below the diagonal line, as we can see from the actual
plot.)

4. Analyzing the unbalanced data

Let’s estimate a few models (including the correct one) via OLS, using the raw data set. We will
try five models:

(1) M1: Simple linear (basic)
(2) M2: Basic with squared term for square footage
(3) M3: Basic with interaction of bedrooms, bathrooms
(4) M4: Basic with squared term for square footage and interaction of bedrooms, bathrooms

(correct model)
(5) M5: As M3, but using log(sqft)

We evaluate the performance of each model following Diamond and Sekhon (2013), using bias (in
percent) for the treatment estimate, and root mean squared error (RMSE) for overall model fit.
As the following table shows, our linear models 1-4 perform quite well despite mis-specification (for
models 1-3). However, the falsely specified non-linear model in square footage (M5) produces a
very misleading treatment estimate, with bias in excess of 30%. Not surprisingly, the correct model
(M4) generates the smallest bias and lowest RMSE.

Table 4. Treatment estimate, raw data

model true est. bias(%) RMSE
M1 -25.000 -24.604 -1.584 25.039
M2 -25.000 -24.593 -1.629 24.992
M3 -25.000 -25.042 0.169 24.789
M4 -25.000 -25.029 0.116 24.744
M5 -25.000 -32.719 30.875 44.405

5. Pre-processing the data with matching

Now let’s narrow the set of controls to achieve better balance in the final data set used for analysis.
We will use the genetic search algorithm proposed by Diamond and Sekhon (2013) and described
in detail in Sekhon (2011) to select a set of controls that produce empirical distributions for the
observed explanatory variables (sqft, beds, baths) that are as similar as possible to those of the
treated units.
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The Diamond and Sekhon (2013) algorithm, henceforth referred to as GenMatch is based on a
weighted Mahalanobis matrix as distance criterion for matching. The optimization routine then
looks for the vector of weights that produces “optimal balance,” as measured by a variety of test
statistics. In math notation:

dij =
√

(xi − xj)
′V−1/2WV−1/2 (xi − xj) (1)

where dij is the vector distance between treated observation i and control j, xi and xj are cor-
responding vectors of observables, V is the variance-covariance matrix of these observables in the
entire data, and W is a diagonal matrix with weights on the diagonal. The GenMatch routine
optimizes over these weights - not to minimize individual, average, or total distance, but to achieve
optimal balance as described above.

This process requires matching at each iteration to check on balance. By default, this matching
is based on the nearest-neighbor method (with replacement, and keeping ties) proposed in Abadie
and Imbens (2006). Conveniently, the GenMatch algorithm can be run in parallel on multi-core
PCs or networks. This substantially cuts down on computation time.

Sekhon (2011) distinguishes between matrix XM , which includes the variables that need to be
matched, and XB, which includes the variables to be used for balance checks. He recommends
adding higher order terms and interactions to the latter. He also suggests to add the propensity
score (PS) π (Z) to the matching matrix X. To be specific, he prefers using the linear prediction
from the PS equation, not the predicted probabilities to avoid boundary problems near 0 and 1. In
addition, he warns against over-specifying the propensity score equation. A simple logit with the
remaining variables in XM should work fine - that’s what he uses in all of his examples.

The propensity score is the probability of receiving treatment, given observed variables Z. As
discussed in Ho et al. (2007), it is a balancing score. This means that if the treated and controls have
the same distribution for π (Z) (i.e. are “balanced on the propensity score”), they will automatically
be balanced on all observables that enter the PS equation as well. However, this only holds for
the true PS, which is unknown. So using the PS alone as guidance for matching is generally not a
good idea, even with a large sample. However, the empirical PS is still a usefull tool to to guide
the GenMatch algorithm towards optimal balance. We will therefore follow Sekhon’s advice and
include the PS in our matching matrix XM .

With this data set and the settings described in the code chunk, GenMatch runs for about 2.5
minutes on a cluster of 8 local cores. It goes through 9 “generations” of weight batches. The
primary output of GenMatch is the diagonal of the weight matrix W in equation (1) above. These
values are captured in the following table:

Table 5. Optimal weights from GenMatch

variable weight
sqft 1.226
beds 152.506
baths 184.867
linPS 873.558
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We now need to run the Match function to obtain the final matched sample and a non-parametric
estimate for the ATT (if desired). This function uses the weights produced byGenMatch shoen
above. Naturally, we’ll use the same general settings for Match that we used for GenMatch, here
matching with replacement and allowing for ties.

Note that we will run this final matching procedure using Abadie, Drucker, Herr and Imbens
(2002)’s bias adjustment, which corrects the purely nonparametric estimate of the price differential
of a treated relative to its control(s) with predictions from a secondary regression model run only
on the matched controls.

From the output of Match we can tell that the matched data set has 2001 observations. Since we
asked for 4 best matches for each of our 500 treated, this implies that there were no ties - each
treated is matched with exactly 4 controls. However, since we started with 5000 controls, clearly
many controls were discarded. Specifically, we ended up using 1502 unique control observations.
This implies that the matched data includes 499 replicated controls - controls that were used for
more than one treated.

Let’s see if balance has improved based on our graphical inspection and our quantitative measures
from above.
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Figure 3. QQ and frequency plots for treated vs. controls
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Table 6. balance statistics

variable norm.diff mean QQ diff med QQ diff max QQ diff
price -0.240 24.943 25.422 58.972
sqft -0.001 0.018 0.010 0.657
beds -0.001 0.000 0.000 1.000
baths 0.000 0.000 0.000 0.000

As can be seen from both the graphs and table, balance has improved dramatically for all variables.

Once we have this final sample, we can two things: (1) Run again our regression models on the
(weighted) matched data and estimate a single treatment effect parametrically, as before, or (2)
directly estimate the ATT non-parametrically with or without regression adjustment, a la Abadie
et al. (2002). The latter approach generally uses the data more efficiently, as it pays attention to
the actually matched pairs. It also produces a separate ATT for each treated home (which are then
averaged over homes). Getting individual treatment effects can be useful down the line.3

However, the main purpose of this note is to show that using OLS on the matched data is more
robust to model mis-specification, so we will re-run or original models.

6. Analyzing the balanced data

We run the same 5 models as before, using all 500 treated observations, but only the 1502 unique
controls coming out of the matching process. Each of these is weighted depending on how often
they were used in the matched sample. Ho et al. (2011), section 5.3, explain the computation of
these weights. The Sweave code underlying this documents shows the exact programming steps.

We use the same criteria as above (relative bias of treatment estimate, and overall fit via RMSE)
to assess model quality.

Table 7. Treatment estimate, M1

model true est. bias(%) RMSE
M1 -25.000 -25.130 0.522 25.755
M2 -25.000 -25.101 0.402 25.748
M3 -25.000 -25.187 0.747 25.572
M4 -25.000 -25.155 0.619 25.563
M5 -25.000 -24.981 -0.077 37.974

As is evident from the new set of results, matching has greatly improved the performance of the
fatally flawed model 5, which, coincidentially, now shows the smallest bias. Bias is also decreased
for the first two models relative to the original OLS results.
It is quite obvious that the estimated treatment effect has become almost perfectly robust to model
specification, with all bias figures lying below the single percentage mark.

3In passing, we note that the non-parametric, bias-adjusted ATT is -24.744, with a heteroskedasticiy-robust standard
error of 1.304
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