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Preliminaries

The estimation of treatment effects has experienced a resurgence in recent years, primarily due
to the arrival of innovative identification methods. The term “treatment” is usually associated with
some government policy such as a job training program, drivers’ education sessions, or new rules
governing standardized tests in public schools. However, it can be used more generally as some
form of change in an institutional framework or even the physical environment that is expected to
have an effect on individuals’ economic decisions.

For example, treatment estimation models are increasingly used in property valuation, where the
“treatment” can be an intervention such as a change in zoning laws, cleaning up superfund sites, or
improving the quality of well water. In this context, treatments can also be “dished out” by nature
- for example via extreme weather events or insect infestations (affecting trees and home values).

There are two fundamentally different treatment scenarios, depending on if the treatment is
exogenous to the decision maker or not. In the first case, the treatment will be ignorable or uncon-
founded with respect to the outcome of interest (hourly wages, home values, health status, etc.),
once we control for observables (our usual x). This case is generally called selection on observables.
The key point is not if people choose to undergo the treatment or if they are randomly assigned to
it, but rather if whatever drives the assignment into a specific treatment status (usually binary -
treated or not) is fully observed and can thus be included in the econometric model. Naturally, if the
assignment is truly random and thus “forced upon” subjects, unconfoundedness is trivially satisfied.

In the second setting people’s assignment to a specific treatment status is driven by observables
and unobservables. The latter, in turn, are often also related to the outcome variable (for instance,
innate “ability” or “spunk” driving both training participation and wage compensation). This case
is generally referred to as selection on unobservables, or treatment endogeneity.

In this set of introductory lectures we will focus exclusively on the first scenario, selection on
observables. In addition, we will limit our discussion to binary (0/1) treatments, which also con-
stitute the bulk of recent applications. However, keep in mind that the treatment could also be
continuous or integer counts (such as monetary incentives, amount of medication administered,
number of outreach efforts made, etc.).
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In terms of estimation methods, we will focus on the three most common methods: (i) regression
analysis, (ii) non-parametric matching, and (iii) propensity score analysis.

Adopting Wooldridge’s (2010) notation, let w be the treatment indicator. Thus, wi = 1 if indi-
vidual i receives the treatment in reality, i.e. in an actually collected sample, and wi = 0 otherwise.
Furthermore, let the hypothetical / theoretical outcome under treatment be y1, and in absence of
treatment y0. Again, these are purely hypothetical constructs and refer to the underlying popula-
tion.

In fact, the fundamental dilemma or challenge in treatment estimation arises because for each
person i we generally only observe one or the other, i.e. yi1 or yi0, but not both. The missing
part needs to be inferred using varying econometric methods. It is important to realize from the
notation that follows if an outcome is actually observed or only exists in theory.

For example, y1|w = 1 is the actually observed outcome for the actually treated, while y0|w = 1
is the counterfactual outcome for the actually treated - what y would have been for the treated in
absence of treatment. The analogous holds for y0|w = 0 versus y1|w = 0. Naturally, we hope that
we can learn about y0|w = 1 from y1|w = 1, and about y1|w = 0 from y0|w = 0. Several important
conditions need to hold for this to be the case.

There are two population parameters of primary interest: The average treatment effect, ATE,
and the average treatment effect on the treated, ATT. They are given as follows:

ATE = τate = E (y1 − y0)
ATT = τatt = E (y1 − y0|w = 1)

(1)

From a statistical perspective, all three of y0, y1 and w are (potentially) random variables with
some underlying distribution in the population of interest. Thus, the expectation operator in (1)
refers to that population distribution. Note that we can always write:

y = (1− w) y0 + wy1 = y0 + w (y1 − y0) (2)

ATE and ATT will be equal if w is statistically independent of both outcomes, even unconditional
on any observables. This is the “ideal” case of treatment analysis - rarely found in reality with
observational data (but often assured by construction with experimental data). If it holds, we have

τatt = E (y1 − y0|w = 1) = E (y1 − y0) = τate (3)

This makes estimation easy, since we can now directly relate the expectation of the y1 based on
an observed sample of y1’s to the general expectation of y1 (i.e. including both observed and
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counterfactual outcomes). The analogous holds for y0. Specifically, we have (using (2)):

E (y|w = 1) = E (y0 + w (y1 − y0) |w = 1) = E (y1|w = 1) = E (y1) and

E (y|w = 0) = E (y0 + w (y1 − y0) |w = 0) = E (y0|w = 0) = E (y0)
(4)

In essence, independence assumes that the expectation of the counterfactual outcomes (y0|w =
1, y1|w = 0) is identical to that of the observed outcomes for the opposite treatment category. This
immediately implies that we can estimate τate (and thus τatt) simply as E (y1) - E (y0). In practice,
this can be accomplish simply by comparing the sample means of the two treatment groups, as
discussed below.

Actually, for these results based on expectations to hold we only need the weaker assumption of
mean independence, i.e.

E (y0|w) = E (y0)

E (y1|w) = E (y1)
(5)

Another useful insight into the relationship between τate and τatt can be gained by decomposing
outcomes as follows:

y0 = E (y0) + (y0 − E (y0)) = µ0 + ν0, and

y1 = E (y1) + (y1 − E (y1)) = µ1 + ν1
(6)

Then:

y1 − y0 = µ1 − µ0 + (ν1 − ν0) = τate + (ν1 − ν0) , and

τatt = E (y1 − y0|w = 1) = τate + E (ν0 − ν1|w = 1)
(7)

So the two effects will be equal if the expected deviation in outcome from the population mean is
the same under both treatments for those who actually participated, i.e. E (ν0 − ν1|w = 1) = 0.
The full effect is captured by the difference in population means.

Fortunately, full unconditional independence or even unconditional mean independence between
outcomes and treatment is not required to estimate τate and τatt. What is important, however, is
independence conditional on observables. So let’s introduce x to our framework.

Conditional Ignorability and Overlap. Now let’s add some observable variables x that are
also random in the population and - potentially - jointly distributed with y0, y1 and w. We can
then define the conditional ATE and ATT as:

ATE|x = τate (x) = E (y1 − y0|x)

ATT |x = τatt (x) = E (y1 − y0|x, w = 1)
(8)
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We can then define the KEY assumption of conditional ignorability as follows:

Assumption 1. Conditional on x, the treatment w is independent of the (hypothetical) outcomes
y0, y1. In other words: The hypothetical outcomes under each treatment are not related to actual
treatment status.

This assumption is also referred to as conditional independence or unconfoundedness. It is
often sufficient to invoke the milder assumption of conditional mean independence, or conditional
ignorability in mean:

Assumption 2. Conditional on x, expected outcomes are independent of treatment, or:

E (y0|x, w) = E (y0|x)

E (y1|x, w) = E (y1|x)
(9)

This says that given x, the expected hypothetical outcome under either treatment is the same
regardless of actual treatment status. As before, this simply implies that we can use ob-
served outcomes from the control group to infer the counterfactual for the treated,
and vice versa.

Some comments on this assumption of ignorability:
It automatically holds if w is a deterministic function of x (for example, “all men over 40 who
have been unemployed for three months or longer receive the treatment”). The more x can explain
about the treatment choice, the more likely will ignorability hold. If w depends on unobservable
factors in addition to x, these unobservables must be independent of y0, y1 and x for ignorability
to still hold.

As a general rule, x should not include variables that themselves are affected by w (e.g. education
decisions after treatment, but before measurement of outcome). This would violate the ignorability
assumption.

Note that under Assumption [2], we have τatt (x) = τate (x), since

τatt (x) = E (y1|x, w = 1)− E (y0|x, w = 1) = E (y1|x)− E (y0|x) = τate (x) (10)

One additional assumption - primarily driven by practical concerns - must hold to allow for the
identification of these treatment effects. It is called overlap and refers to the distribution of x over
the treated and untreated sub-populations. Specifically:

Assumption 3. Overlap: ∀x ∈ X : 0 < p (w = 1|x) < 1, (11)

where X is the support of the covariates. Basically, this assumption states that for any setting of
x in the population there is a non-zero probability of observing individuals with such an x in both
the treated and control group. If this weren’t the case, we couldn’t use observed outcomes given
some x to infer the counterfactual for the reverse outcome, given the same x (since individuals with
such an x would have never undergone treatment or never not undergone treatment).
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As an aside, note that the probability p (w = 1|x) is know as the propensity score. It plays a
central role in the estimation of treatment effects, as we will see below.

If we’re only interested in ATT, a milder overlap assumption suffices for identification (in addition
to Assumption [2]):

Assumption 4. ∀x ∈ X : p (w = 1|x) < 1, (12)

So in this case, the probability of receiving treatment for some x can be zero - such x would
then obviously not be observed amongst treated individuals, so finding the counterfactual for it is
a moot point. Importantly, however, we need to (at least in theory) be able to observe a control
group outcome for each treated outcome, for any setting of x, so not all individuals with this setting
can be in the treated group.

Identification

Using (2), Assumption [2], and the notation from (6), we have

E (y|x, w) = E (y0|x, w) + w (E (y1|x, w)− E (y0|x, w)) =

E (y0|x) + w (E (y1|x)− E (y0|x)) =

µ0 (x) + w (µ1 (x)− µ0 (x))

(13)

It follows immediately that

E (y|x, w = 0) = E (y0|x, w = 0) = µ0 (x)

E (y|x, w = 1) = E (y1|x, w = 1) = µ1 (x)
(14)

Given a sample of (y,x, w) we can estimate these quantities via the sample means or an estimable
regression function m0 (x) = E (y|x, w = 0) and m1 (x) = E (y|x, w = 1). Specifically, if Assump-
tions [2] and [3] hold, we have:

τate (x) = m1 (x)−m0 (x) , and

τate = Ex (m1 (x)−m0 (x)) = Ex (τate (x))
(15)

The first equation states that we can estimate the ATE for a sub-population with a specific x via
the difference in sample means (or predictions from a regression model) between outcomes for the
treated and the control group, where the sample means (or regression models) are based on all
individuals that have this exact setting of x. In reality, x this may be represented by just a few
samples points. At the minimum, we need as many sample points per treatment as the dimension
of x to estimate τate (x).

The second equation states that we can then obtain the unconditional ATE by averaging over
the conditional ATE’s based on the distribution of x in the sample.
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Using the milder Assumption [4] in addition to Assumption [2], we can derive an estimate for
ATT via

τatt (x) = m1 (x)−m0 (x) = τate (x) , and

τatt = Ex (m1 (x)−m0 (x) |w = 1)
(16)

Identification using the propensity score. As shown in Wooldridge (2010), section 21.3.1, we can
also identify the conditional and unconditional ATE and ATT using the propensity score p (x) =
p (w = 1|x). The results are as follows (maintaining Assumptions [2] and [3] for the ATE, and
Assumptions [2] and [4] for the ATT):

τate (x) = Ew,y

(
(w − p (x)) y

p (x) (1− p (x))
|x
)

τate = Ew,y,x

(
(w − p (x)) y

p (x) (1− p (x))

)
τatt (x) = Ew,y

(
(w − p (x)) y

ρ (1− p (x))
|x
)

τatt = Ew,y,x

(
(w − p (x)) y

ρ (1− p (x))

)
(17)

where ρ = p (w = 1), the unconditional probability of ending up in the treatment group. Identi-
fication via the propensity score can be convenient in practice when the dimension of x is large,
which could make a regression-based approach difficult to implement.

Estimation. Under the assumption of ignorability and overlap, there exist three general approaches
to estimating treatment effects:

(1) regression-based methods
(2) propensity score methods
(3) matching methods

There also exist various combinations of these three general strategies. For example, regression or
matching approaches often utilize the propensity score. We will discuss each approach in turn in
the next set of lecture notes.
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