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Estimating the propensity score (PS)

The first step in any PS-based approach is the estimation of the PS itself, i.e. to derive
p̂ (xi) , i = 1 . . . N . Note that this needs to be done for all observations in the sample, treated
or not.

In this step the binary treatment indicator is de facto the “dependent variable”. The explanatory
variables are the original x (the same we would use in a regression-based approach), plus, option-
ally, additional squared and interaction terms, similar to the “auxiliary regression” we used for the
White’s heteroskedasticity test. The addition of these extra terms was suggested by Rosenbaum
and Rubin (1983) to add flexibility to the PS model.

The PS step is usually based on some Generalized Linear Model (GLM) that combines a con-
tinuous density function defined over {0, 1} with a linearly parameterized mean function. Perhaps
the most common choice is a logit model (e.g. Ch. 17 in Greene, 2012). It is given as

p (xi) = p (yi = 1|xi) =
exp (x′iβ)

1 + exp (x′iβ)
(1)

where β are the model coefficients to be estimated. This model is straightforward to estimate via
MLE with known gradient and Hessian (see section 17.3 in Greene, 2012). Predicted probabilities

are obtained by replacing β with the estimated coefficients β̂ in (1). As illustrated in script mod5s2,
we can use R ’s built-in glm(.) function to estimate the logit model, followed by predict(.) to
obtain the predicted PS’s for each observation in the sample.

As described in Wooldridge (2010), section 21.3.3, nonparametric methods are also available to
estimate p (xi).

Using the PS to check on overlap

As in the regression adjustment case, we are concerned about overlap of regressors between the
sub-sample of treated and controls. Once you have p̂ (xi) for each observation, you can use it to
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check on overlap. Simply examine the sample statistics of p̂ (xi), especially the lower and upper
percentiles.

As mentioned in Wooldridge (2010), PS’s below 0.1 and above 0.9 may be indicative of poor
overlap with respect to the estimation of ATE. For ATT, only extremely high score, say 0.9 or
above, pose reasons for concern, as discussed in the previous lecture notes. In that case, the ana-
lyst may again redefine the population of interest.

Other uses of p̂ (xi) to examine overlap are via its normalized difference (ND, see regression
adjustment notes) or the ND of its log-odds ratio, given as

ln

(
p (xi)

1− p (xi)

)
= x′iβ (2)

Using ND, values above 0.25 would raise a red flag, as suggested by Imbens and Rubin (forthcom-
ing).

Estimating treatment effects

With p̂ (xi) in hand, we can directly apply the expressions from the previous lecture notes to
obtain consistent estimates of ATE and ATT, specifically:

τ̂ate = n−1
n∑

i=1

(wi − p̂ (xi)) yi
p̂ (xi) (1− p̂ (xi))

τ̂att = n−1
n∑

i=1

(wi − p̂ (xi)) yi
ρ̂ (1− p̂ (xi))

(3)

where ρ̂ is estimated as n1/n, i.e. the proportion of treated in the sample. Note again that the
summation is taken over the entire sample for both estimators.

Wooldridge (2010) discussed several approaches to obtain standard errors for these estimates.
The bootstrap is again an attractive strategy, as it controls for sampling error in both stages of the
analysis. This is the approach taken in script mod5s2.

As you can easily see from the expressions in (3), very large or very small values for p̂ (xi) can
lead to very large entries in the summation for τ̂ate. For τ̂att, only very large values of p̂ (xi) are of
concern.

The PS in regression adjustments

We can also combine regression adjustment (discussed in the previous lecture notes) and PS-based
estimation. The logic of this approach is based on Rosenbaum and Rubin (1983), who show that,
under Assumption [1] (conditional ignorability of treatment with respect to outcome), treatment
is ignorable conditional only on the propensity score p (x). Specifically, under Assumption [1], we
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have:

E (y|w = 0, p (x)) = E (y0|p (x)) , and

E (y|w = 1, p (x)) = E (y1|p (x))
(4)

The proof proceeds in 3 steps:

Step 1: by Assumption [1], we can write:

E (w|y0, y1,x) = E (w|x) (5)

Step 2: Using the law of iterated expectation:

E (w|y0, y1, p (x)) =Ex (E (w|y0, y1, p (x) ,x)) =

Ex (E (w|y0, y1,x)) = Ex (E (w|x)) =

Ex (p (x)) = p (x)

(6)

where p (x) can be dropped from the inner expectation in the second line since it is deterministic
(thus redundant), given x, and we use the result from step 1 in line 3. The last line uses the
alternative way of writing the propensity score, that is as E (w|x). The outer expectation then
becomes the expectation of a constant, which of course is just that constant. Step 2 thus implies
that, conditional on the PS, w is independent of y. Naturally, this also holds the other way round,
i.e. conditional on the PS, y is independent of w.

Taken together, steps 1 and 2 show that ignorability of w holds conditioning only on the propen-
sity score. The last step uses y = (1− w) y0 + wy1 to establish the final result:

E (y|w, p (x)) =(1− w) ∗ E (y0|w, p (x)) + w ∗ E (y1|w, p (x)) =

(1− w) ∗ E (y0|p (x)) + w ∗ E (y1|p (x))
(7)

where we use the result from step 2 in the second line. The results in (4) then follow immediately
by setting w to either 0 or 1.

Given these results, we can identify τate via Ex (E (y1|p (x))− E (y0|p (x))). Letting rg (p (xi)) =
E (yg|p (xi)) , g = 0, 1 be some estimable regression function, we obtain

τ̂ate = n−1
n∑

i=1

r̂1 (p̂ (xi))− r̂0 (p̂ (xi)) , and

τ̂att = n−11

n∑
i=1

wi ∗ (r̂1 (p̂ (xi))− r̂0 (p̂ (xi))) ,

(8)
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As before, if we believe that the effect of p (x) on the outcome is identical for treated and controls,
we can run a single pooled regression of the outcome yi on the treatment wi and p̂ (xi) instead.
Essentially, this corresponds to the pooled regression approach discussed previously, replacing x′iβ
with the estimates propensity score. In that case, we have again τ̂ate = τ̂att.

The (seeming) attraction of regression on the propensity score is that it preempts the need to
specify exactly how the potentially high-dimensional set of covariates x should enter the regression
function. However, the same dilemma surfaces for the specification of the PS model, as discussed
above. Thus, little is gained in that respect.

Furthermore, as discussed in Wooldridge (2010), regression on the propensity score is generally
inefficient compared to the standard regression adjustment approach.
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