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General Approach

The regression functions m0 (x) = E (y|x, w = 0) and m1 (x) = E (y|x, w = 1) can be directly
used to estimate ATE and ATT.

Given a random sample of size n = n0 + n1, where n0 is the size of the sub-sample of untreated
observations, and n1 denotes the size of the sub-sample of treated observations, consistent regression
adjustment estimators of ATE and ATT can be derived via

τ̂ate = n−1
n∑

i=1

(m̂1 (xi)− m̂0 (xi)) , and

τ̂att = n−11

n∑
i=1

wi ∗ (m̂1 (xi)− m̂0 (xi)) ,

(1)

where m̂0 (x) and m̂1 (x) are themselves consistent estimators of m0 (x) and m1 (x), respectively.

In general, the implementation steps are as follows:

(1) Estimate m̂0 (x) from the control sample via parametric or nonparametric regression.
(2) Estimate m̂1 (x) from the treated sample in similar fashion.
(3) For all i in the sample, compute ŷi0 and ŷi1 as fitted values from the two regression models,

and take the difference.
(4) Average the difference over the entire sample for ATE, and over the sub-sample of the

treated for ATT.
(5) Derive standard errors for these effects via analytical methods or bootstrapping.

Lets’ call the model coefficients for the “control” model θ0, and those for the the treated model θ1.
Running two separate regressions for the two sub-samples implies that we ex ante allow the effect
of x to vary across the two groups, i.e m0 (x) = m (x,θ0) and m1 (x) = m (x,θ1).
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If the coefficients are assumed to be the same in both models, a single “pooled” regression can
be estimated instead. In that case, the ATE (which will be equal to the ATT) can be estimated as
the coefficient of a treatment “dummy” variable that is added to the set of explanatory variables.
The standard error of the effect is simply the standard error of that coefficient. Robust methods
guarding e.g. against heteroskedasticity can be applied as usual.

Finally, if x are of secondary importance for identification (for example in randomized experi-
ments), an estimate for the ATE (equal to ATT) can be obtained by simply taking the difference
of the sample means of outcomes for the treated and controls.

Script mod5s1 illustrates these various approaches.

Notice that for these regression approaches to be feasible we need to observe the same set of
covariates for the entire sample. That is, we cannot have missing values for x (and, of course w)
in the sample at large.

Checking for overlap

As noted in Wooldridge (2010), p. 917, Imbens and Rubin (forthcoming) suggest to use normal-
ized differences (NDs) for each explanatory variable to verify the overlap assumption. For a given
regressor k the ND value can be computed as

NDk =
(x̄1k − x̄0k)(
s21k + s20k

)1/2 (2)

where x̄ is the sample mean, and s denotes the sample standard deviation. Imbens and Rubin
(forthcoming) suggest any value for NDk exceeding 0.25 a cause for concern.

If overlap is blatantly violated for some x it may be necessary to re-define the population of
interest, as discussed in Wooldridge (2010), pp. 916-917. In fact, if we’re primarily interested in
the ATE for a specific subpopulation R, overlap problems can be avoided by simply estimating the
regression function(s) using only the restricted sample.

Linear regression

If the regression adjustment takes a (standard) linear form, we have

m0 (x,θ0) = α0 + x′β0,

m1 (x,θ1) = α1 + x′β1,
(3)
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Expressions for ATE and ATT then simplify to

τ̂ate =n−1
n∑

i=1

(
m̂1

(
xi, θ̂1

)
− m̂0

(
xi, θ̂0

))
=

n−1
n∑

i=1

(
α̂1 − α̂0 + x′i

(
β̂1 − β̂0

))
=

α̂1 − α̂0 + n−1
n∑

i=1

(
x′i

(
β̂1 − β̂0

))
=

α̂1 − α̂0 + x̄′
(
β̂1 − β̂0

)
(4)

where x̄ is the vector of sample means for the regressors. For ATT, simply substitute x̄1, the sample
means for the treated only, in lieu of x̄.

As mentioned above, standard errors for the estimated treatment effects can be obtained via
bootstrapping - as illustrated in script mod5s1. This procedures automatically controls for uncer-
tainty in both θ̂g, g = 1, 0, and the distribution of x in the population.
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