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Normal linear regression model via Gibbs Sampling 
Gibbs Sampler Diagnostics 
(K Ch. 4, KPT Ch. 11) 
R scripts  mod6s3a - mod6s3g 
 
 
As mentioned previously conjugate priors may be overly restrictive in many Bayesian applications.  Here 
we use a popular combination of independent priors for the regression model – normal for β and inverse-
gamma for 2σ .  This also implies that we parameterize the error variance directly in terms of 2σ and not 
in term of its inverse, i.e. the precision.  This will “feel” more natural to a classically trained analyst. 
 
The enhanced flexibility in prior modeling comes at the price of abandoning analytical results for the 
posterior distribution. Instead, we will use posterior simulation via Gibbs Sampling to obtain draws from 
the joint and marginal posteriors. 
 
The structural model is the same as for the conjugate model.  Here, nothing is gained by introducing b 
and SSE into the LHF, so we start simply with: 
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Note the change in notation from h to 2σ .  The priors are given as follows: 
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Note that 2σ  does not enter the prior density of β .  Also, amongst the many possible parameterizations of 
the inverse-gamma (ig) density, we choose the form given in Gelman et al. (2004), where 0v  is the shape 
parameter and 0τ  is the scale parameter.  The ig density becomes more diffuse (flatter) with smaller 
values for shape and scale.  However, for the density to have a defined mean, we need 0 1v > , and for a 
well-defined variance we need 0 2v > .   
 
Combining the priors with the likelihood, and dropping all terms that are multiplicatively unrelated to our 
parameters of interest yields the posterior kernel 
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We first aim to find the posterior density for β , conditional on 2σ  (i.e. treating 2σ as a constant).  Thus, 
we will fist focus on the components of the posterior kernel that cannot be multiplicatively separated from 
β .  This leaves 
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Note the conditionality on 2σ  on both sides of (4).  We’ll now use a similar transformation trick as for 
the previous model.  Let 
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Then: 
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Thus, we can re-write the conditional posterior kernel in (4) as 
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None of the terms in the second exponent include β , so this conditional further simplifies to 
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Thus, we have again the kernel of a multivariate normal density, and can state that 
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To derive the conditional posterior density for 2σ , we return to our original form for the joint posterior 
given in (3).  Ignoring terms that are not related to 2σ , we have  
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Comparing this expression to the kernel of the ig prior in (2), we recognize this as the kernel of another ig 
density. Specifically: 
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Thus, it will be straightforward to draw β  conditional on 2σ  and vice versa.   
 
Gibbs Sampler 
 
The Gibbs Sampler (GS) has become the “workhorse” of Bayesian posterior simulation in recent years.  
The general idea is simple: break the joint posterior into conditional posteriors for which the analytical 
form of its density is known.  Then sample sequentially and repeatedly from these conditionals.  After a 
number of draws the joint sequence of conditional draws will converge to the desired joint posterior 
densities for all parameter.  In addition, each individual sequence can be interpreted as the marginal 
posterior for a given parameter.  The GS is an example of a “Markov Chain Monte Carlo”, or 2MC
procedure. 
 
Formally, assume our parameter vector of interest is θ , with posterior kernel ( ) ( ) ( )| |p p p∝θ y θ y θ .  
Assume further that this kernel has no known analytical form.  However, we can split θ  into two 
components, say 1θ  and 2θ .  For example, in our current application, =1θ β  and 2σ=2θ .  In other 
applications, we may want to split θ  into 3, 4, or even more components.  The key notion is that we know 
the analytical form of the resulting full conditional posterior distributions, i.e.  
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All we need to get the GS started is an initial value for 2θ , call it  0

2θ . This can be chosen arbitrarily, or 
one can use OLS results or results from previous analyses.  We assume this starting value comes directly 
from the marginal posterior ( )|p y2θ .   Next, we draw 1θ  conditional on 0

2θ  from ( )0| ,p 1 2θ y θ .  Call this 

draw 1
1θ . Next, we draw another value of 2θ  conditional on 1

1θ  from ( )1| ,p 2 1θ y θ .  Call this draw 1
2θ .  

We repeat this process R times.  In essence, we use the basic rule of conditional probabilities , i.e.  
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over and over again.  As a caveat we should note that, naturally, there is no guarantee that our starting 
value 0

2θ  really came from the marginal posterior ( )|p y2θ .  However, under relatively weak conditions 
(see Koop Ch. 4 for details) the starting value(s) will not matter and the GS will indeed converge to draws 
from ( )|p θ y .  To assure that the effect of the starting value has truly “faded away”, we usually discard 
the first 1r  draws of the sequence, and keep only the remaining 2 1r R r= −  draws.  The discarded draws 
are often referred to as “burn-ins”. 
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Monte Carlo Integration 
 
The derivation of moments from this simulated posterior is accomplished via Monte Carlo Integration.  
For example, the analytical expressions for the mean (or expectation) and variance of a given element of 
β  , say jβ , are given by  
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A convenient alternative expression for the variance is  
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Also, the expectation and variance of any other function of jβ  , say ( )jg β , take the form of 
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For any of these expressions, MCI approximates the integral with averaging over draws.  Thus 
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Implementation with Simulated Data 
 
R script mod6s3a provides an opportunity to examine ig distributions for different settings for the shape 
and scale parameters.  In general, lower settings for 0ν  and higher settings for 0τ produce a flatter (more 
diffuse) priors.  However, the most diffuse and most commonly used prior settings are ½ for both 
parameters.  While this does not produce identified moments, the resulting pdf is still proper, in the sense 
of integrating to one. 
 
R script mod6s3b is the main script for this model. It opens the log file, loads data, specifies priors and 
other settings for the posterior simulator, and runs the Gibbs Sampler (GS). The script also applies 
diagnostic tools (discussed later) to the posterior draws and generates plots comparing the prior and 
posterior distributions for our parameters.  As before, the posterior densities are much tighter than the 
priors in all cases.   
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Convergence Plots 
 
Convergence plots are a simple visual tool to examine if the simulator has converged to the posterior 
distribution for a given parameter.  The plot simply shows all draws of a given parameter in chronological 
order, as generated by the sampler.  "Convergence" usually implies that the draws are tightly clustered 
around a flat line (the posterior mean), and do not wander widely. This is similar to assessing stationarity 
for time series data.   
 
Convergence plots can be used to assess the sensitivity of the algorithm to starting draws (the chain 
should converge to the same distribution under different starting draws), the speed of convergence (and 
thus the efficiency of the sampler), and the sufficiency of the chosen number of discarded draws (burn-
ins).   
 
Script mod6s3c  provides a few examples using simulated data.  There are three parts:  Full data, data 
truncated to 100 observations, and data truncated to 10 observations.  For each case, we first use two sets 
of starting draws for β and 2σ .  The first set comes from the OLS output and is thus "right on target", i.e. 
close to the posterior mean (and the true parameter values underlying our simulated data). The second set 
is deliberately located quite far from the true values. 
 
For all cases we use a slightly modified GS. As opposed to the previous version, this algorithm 
preserves the burn-in draws and sends them back to the main script along with the "keepers" (i.e. retained 
draws from before). 
 
You can see that with the full data set of 10,000 observations, the choice of starting draws virtually 
doesn't matter – the chain essentially converges after one or two iterations.  Furthermore, parameter draws 
fluctuate very tightly around the posterior mean.  A reduction in sample size implicitly assigns more 
weight to our diffuse priors.  As a result, the chain exhibits more "noise", i.e. wider fluctuations around 
the mean.  This will translate into a larger posterior standard deviation.  However, even with just a 
handful of observations, convergence is virtually immediate even with off-target starting draws.  This is 
an indication that the sampler itself is efficient, i.e. "mixes rapidly".  
 
Posterior noise (i.e. the posterior standard deviation) is also driven by the information content of the data, 
regardless of sample size.  Highly collinear data implies poor information content and will generate wider 
fluctuations around the posterior mean.  This is illustrated in script  mod6s3d. If you compare the plots 
from this script to the ones from before for any parameter and sample size, you will notice the increase in 
variability around the posterior mean for the collinear data. 
 
 
Application: Female Earnings 
 
R script mod6s3e  implements the normal linear regression model with independent priors using  Mroz's 
(1987) labor data.  
 
 
Gibbs Sampler Diagnostics 
 
This section describes in detail the output component generated by the "diagnostics" section of mod6s3b, 
and all subsequent scripts using a Gibbs Sampler.  
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Numerical standard error (nse) 
 
The nse captures simulation noise for a value of interest generated via posterior simulation.  Usually this 
value of interest is a measure of central tendency, such as the posterior mean.  Consider the mean 

1

1
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MM
m

θ θ
=

= ∑ of a sequence of m draws of (some generic) parameter θ .  Assume these draws were 

generated by a Gibbs Sampler (GS) or some other Markov-Chain Monte Carlo ( MC2) algorithm.  If these 
draws were perfectly independently and identically distributed  (i.i.d.) with sample variance 2s  , we could 
quickly derive the nse for θ using the basic formula for the standard error of a sample mean, i.e.  
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However, as with all MC2 procedures, we have to ex ante assume that these sequential draws will have a 
considerable degree of correlation.  This means we have to consider all covariance terms between all 
draws of θ .  After some straightforward analytical simplifications (shown in detail in KPT, p. 145), we 
end up with a more general expression for the nse that allows for correlation across all draws: 
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ρ =  is the lag-correlation between some draw iθ  and a draw that was obtained j iterations 

prior to iθ , i.e. i jθ − , with js denoting the associated sample covariance.  It can be easily seen from (2)  

that under perfect independence ( 0,j jρ = ∀ ) we arrive again at the basic formula given in (1).  In most 
MC2 applications, lag-correlations will be positive but declining in magnitude.  Thus, the second term 
under the square root in (2) will exceed 1, and the nse under correlation will be larger that the nse under 
independence.  Note that in either case the nse can be made arbitrarily small by increasing M, the number 
of draws.  However, this can be very costly in terms of computation time.  Thus, we are always interested 
in devising a posterior sampler that is “efficient” in the sense of generating draws with low lag-
correlation.  There are many “tricks” for accomplishing this – we’ll touch upon a few in this course. 
 
In summary, the first purpose of the nse is to provide a measure of “simulation error” or “simulation 
noise” surrounding a posterior construct of interest, usually the posterior mean of a given parameter.  
Thus, the nse has a similar function to the standard error (s.e.) in Classical Analysis.  However, its 
intuition is very different – it simply captures simulation noise, i.e. the penalty for having to approximate 
the joint posterior via simulations (since its analytical form is unknown).  The Classical s.e. conveys the 
notion of sampling error – i.e. the variability of the statistical construct of interest under (hypothetical) re-
sampling.  You can also think of this as the penalty from working with a small sample relative to a large 
population. 
 
 
Inefficiency factors (IEFs) 

 
The second purpose of the nse is to provide a summary measure of the “efficiency” of the 

posterior simulator.  An efficient simulator will have low correlation across draws, and thus will be able 
to “tell the same story with fewer draws” – saving valuable computing time.  As discussed in Chib (2001, 
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section 3.2) the ratio of the squared nse under correlation over the squared nse under independence can be 
interpreted as “inefficiency factor” (IEF), also known as “autocorrelation time” for a given parameter, i.e.  
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A well-designed posterior simulator will generate sequences of parameter draws with low IEFs, the ideal 
being an IEF close to 1.  Sometimes the inverse of the IEF is used to measure posterior efficiency.  This 
quantity is called “numerical efficiency” (See Geweke, 1992).  A third quantity to assess efficiency is the  
“i.i.d - equivalent number of iterations”, labeled M* in the following, i.e. the number of i.i.d. draws that 
contain the same amount of information about θ as the observed number of draws under correlation.  It is 
easily derived via 
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It follows that under perfect efficiency, we have *M M= , but usually we observe *M M< .   
 
It should be noted that a very high IEF (very low M*) can be indicative of identification problems in your 
model.  How high is “very high?  From personal experience, I would say that IEFs in the 1-5 range 
indicate good efficiency,  in the 6-20 range they’re still “tolerable”, but anything above 20 deserves closer 
inspection.  Certainly, IEFs of 100 and higher are almost a sure-bet indication of an identification or 
specification problem in the underlying structural model. 
 
Geweke’s (1992) Convergence Diagnostics(CD) 
 
Another important sampler diagnostic is Geweke’s (1992) CD score.  It is based on the simple intuition 
that if the entire sequence of retained 'sθ (focusing on a single parameter for simplicity) can truly be 
interpreted as random draws from the same posterior density ( )|p θ y , and we divide the sequence of R 
draws into three segments, the mean of the first segment of 11r R=  draws should be “not too different” 
from the mean of the last segment of 2 1r R R= +   draws.  A stated in Koop Ch. 4, setting 1 0.1R R= and 

2 0.6R R=  produces adequate results for most applications.  Define the two means as 1θ  and 2θ , 
respectively.  Then, asymptotically, the difference between these means, weighted by their respective 
numerical standard errors, converges to a standard normal (“z”) variate, i.e.  
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2 2
1 2
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CD n
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+
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Thus, a CD value that clearly exceeds 1.96 for a specific parameter θ  would raise a flag – it indicates that 
the sequence of posterior draws may not have converged to ( )|p θ y .  In practice, if a few CD values in 
the 2-2.5 range for a model with many parameters would hardly raise concerns.  However, if your 
posterior simulator generates CD values of 3 or higher, an increase in the number of burn-in draws may 
be warranted.  Similarly to IEFs, grossly inflated CD values may also indicate identification and / or mis-
specification problems in the underlying model. 
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Autocorrelation (AC) plots 
 
There are two additional noteworthy diagnostics tools: autocorrelation plots (“AC plots”) and re-running 
the posterior sampler with different starting values.  An AC plot provides a simple visual inspection of the 
lag-correlation terms ( jρ  in (2) ) for a given parameter.  An example for AC plots is provided in the R 
script mod6s3f.  A "well-behaved" AC plot will exhibit small correlation effects that randomly fluctuate 
around zero.  A plot with high (usually positive) correlations  that taper off only very slowly with 
increasing lag would be indicative of inefficiencies in the posterior simulator. 
 
Blocking 
 
As discussed in previous Sessions of this course, a Gibbs Sampler operates by splitting the full set of 
parameters into different groups or "blocks", which are then drawn sequentially and repeatedly, 
conditional on all other blocks.   
 
The main consideration in designing these blocks for a standard Gibbs Sampler is that the conditional 
posterior density for each block is known, else we wouldn't be able to take any draws from it. However, 
this requirement can be relaxed by employing other posterior simulation techniques, such as the 
Metropolis Hastings (MH) algorithm, which does not require full knowledge of the conditional posterior 
density for a given parameter or block of parameters.  Thus, the "optimal blocking" of the full set of 
parameters becomes a more general question. 
 
As discussed inter alia in Chib (2001, section 7.1)  it is generally recommended that parameters be drawn 
in as few blocks as possible, and that parameters that tend to be highly correlated be collected in the same 
block.  
 
Identifying what constitutes a full-fledged block in a given posterior algorithm can be tricky.  This is 
because blocks can be combined by the method of composition, i.e. by exploiting the fact that partially 
conditional posterior distributions may be known (or can be approximated at low computational cost) for 
some parameters.  For example, consider an initial blocking of the full parameter vector into three groups, 

, ,1 2θ θ and 3θ .  A "naïve" posterior sampler will then operate as follows: 
 
1. Draw 1θ from ( )| , ,p 1 2 3θ θ θ y , where y represents the available data. 

2. Draw 2θ from ( )| , ,p 2 1 3θ θ θ y  

3. Draw 3θ from ( )| , ,p 3 1 2θ θ θ y  
4. Repeat. 
 
Now suppose the partially conditional density ( )| ,p 1 3θ θ y is known or can be approximated at low 
computational cost.  A (likely) more efficient posterior sampler would then collect 1θ and 2θ in a single 
block and operate as follows: 
 
1. Draw ,1 2θ θ from ( ) ( ) ( ), | , | , , * | ,p p p=1 2 3 2 1 3 1 3θ θ θ y θ θ θ y θ θ y  as follows: 

a. Draw 1θ from ( )| ,p 1 3θ θ y  

b. Draw 2θ from ( )| , ,p 2 1 3θ θ θ y  

2. Draw 3θ from ( )| , ,p 3 1 2θ θ θ y  
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Thus, even though step 1 involves 2 sub-steps, it is considered a single block. The key notion in 
identifying the number of blocks is that for a set of parameters to constitute a self-standing block, it needs 
to be drawn conditional on all other blocks, and vice versa, i.e. all other blocks also need to be 
conditioned on the first block.   
 
Blocking in the normal linear regression model 
 
For the normal regression model we have considered so far the parameter blocking was quite obvious 
and,  as it turns out, efficient:  We grouped the constant term and all slope parameters into a single block (
β ), which left the regression variance 2σ as the only other (single-parameter) block.   Our GS proceeded 
as follows: 
 
1. Draw β  from ( )2| , ,p σβ y X  

2. Draw 2σ from ( )2 | , ,p σ β y X  
 
Matlab script  mod6s3g  proposes a different approach based on 4 blocks. Specifically, we split β into 
three parts of equal length, labeled 1β , 2β , and 3β .   We then proceed as follows: 
 
1. Draw 1β  from ( )2| , , , ,p σ1 2 3β β β y X  

2. Draw 2β  from ( )2| , , , ,p σ2 1 3β β β y X  

3. Draw 3β  from ( )2| , , , ,p σ3 1 2β β β y X  

4. Draw 2σ from ( )2 | , ,p σ β y X  
 
In practice, draws of , 1 3j =jβ  can be obtained as follows:  
We know that for the basic linear regression model  
 
= +y Xβ ε   (6) 

 
we obtain conditional draws of βvia 
 

( ) ( ) ( )2 2

12 1 1| , , ~ , with andn
σ σ

σ
−

′ ′= + = +-1 -1
1 1 1 0 1 1 0 0β y X μ V V V XX μ V V μ X y  (7) 

 
Now partition X and β into three parts corresponding to our new blocking, i.e. 
 
= + + +1 1 2 2 3 3y X β X β X β ε   (8) 

 
Consider the "transformed" dependent variable = − −2 2 3 3y y X β X β  and the resulting modified 
regression model 
 
= +1 1y X β ε   (9) 

 
We can thus derive the conditional posterior for 1β as 
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where 01μ  and 01V are the prior mean and variance for 1β .  Draws of 2β and 3β can be obtained in 
analogous fashion. 
 
The posterior output clearly shows efficiency losses compared to the original version, as judged by IEF 
and M* scores, which is evident from comparing autocorrelation plots for the original and the 
"excessively-blocked" version for selected parameters.  
 
Also note the loss in speed – the inefficient sampler takes about twice as long to take the same number of 
draws. 
 
We can also compare the relative performance of the two samplers based on AC and convergence plots. 
The plotted chain of draws for "we" is especially illustrative: the chain wanders widely, with a clear auto-
correlation pattern.  This is confirmed by the AC plot for "we", which shows high correlations for 
neighboring draws that are reluctant to taper off. 
 
The main drawback of such a highly correlated chain is that it takes much longer to "visit" the entire 
posterior distribution with appropriate frequencies . This may result in misleading posterior inference, 
based on overly tight or otherwise "incomplete" distributions. (In fact, the posterior standard deviations 
flowing from the inefficient sampler are actually slightly smaller than those generated by the efficient 
sampler) . 
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