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Posterior Predictive Densities, Posterior Predictive p-values, 
Highest Posterior Density Interval 
(KPT, Ch. 7) 
R scripts:  mod6_4a, mod6_4b, mod6_4c 
 
Posterior Predictive Densities 
Consider again the female wage regression from script mod5_3e.  Let’s assume you’re interested in 
predicting the outcome (in this case the log(earnings), and – ultimately – earnings in $$$) for a woman 
with characteristics px , i.e. you are interested in learning about the construct 
 
ˆ pε′= +p py x β   (1) 

 
In Bayesian analysis this means you’re interested in the posterior predictive distribution of ˆ py .  

Formally, this PPD is given by (suppressing conditionality on px for convenience) 
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where the third equality follows from the fact that, conditional on θ , ˆ py  is independent from the actual 
data y.  From our basic regression framework we know that 
 
( ) ( )2ˆ | ,pp y n σ′= pθ x β   (3) 

 
Naturally, ( )|p θ y is simply our posterior distribution, and we already have draws from it from our 

original Gibbs Sampler.  Thus, we can derive ( )ˆ |pp y y  by drawing ˆ py  from ( )2,r rn σ′px β , where 
subscript r indicates the rth draw of our parameters in the retained series of draws from the original GS.  
To be precise, 1 draw of ˆ py  per rθ  is sufficient to generate the PPD.  Optionally, you can take several 

draws of ˆ py  per rθ  for a “smoother” posterior density (= nicer to plot). 
 
Once you have all draws of ˆ py  (say “R” of them), you can derive the moments of the resulting PPD via 
Monte Carlo integration.  For example, the posterior predictive mean can be derived as 
 

( ) ( )
1ˆ

1ˆ ˆ ˆ ˆ ˆ| |
p

R

p p p p pr
ry

E y y p y d y y
R =

= ≈ ∑∫y y   (4) 

 
In regression analysis, we are often interested in predicting a function of  ˆ py . The most prominent 

example is ( )ˆexp py  when the original regression used the log form for the dependent variable. In the 

Bayesian context, this implies that we’re interested in the PPD of ( )ˆexp |py y .  You can think of this in 
one of two ways – the hard way and the easy way.   
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The hard way would be to re-define your posterior construct of interest as  
 

( )expp p py x ε′= +β   (5) 
 
where I use the “~” symbol to distinguish the predictive construct to our original one in (1).  Formally, we 
have again 
 
( ) ( ) ( )| | |p pp y p y p d= ∫

θ

y θ θ y θ    (6) 

 
In theory, we could proceed as before to generate draws from the PPD. However, this requires drawing 
from ( )|pp y θ  - and it’s not immediately clear what the analytical form of this density looks like (in this 

case it’s a log-normal, in fact, but in many cases the form of ( )|pp y θ  will be unknown or difficult to 
assess).   
 
The easy way would be to realize that you already have draws of ( )ˆ logp py y=  (or you know how to 

generate them easily following the procedure form above).  Then by exponentiating each draw of ˆ py  we 

automatically get ( ) ( )( )ˆ| exp |p pp y p y=y y .  Similarly, the moments of py can be approximated via 

Monte Carlo Integration, for example: 
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R script mod6_4a illustrates this procedures.   
 
 
Posterior Predictive P-values (PPPs) 
 
The computation of PPPs builds directly on predictive distributions, so this is a good place to discuss 
them. 
 
PPPs are an alternative measure of “model fit”, especially for cases where the marginal likelihood is 
difficult to derive.  They can be used to assess the qualities of a single model, or to compare several 
models (in which case a model with higher PPP would be preferred).  PPPs can also be used to test some 
of the assumptions underlying a given model. 
 
The basic intuition for PPPs (or “Bayes p-values”) is as follows:  We choose some construct of interest or 
test statistic of interest that is a function of our actual data y .  We then simulate a posterior predictive 
density for the same statistic, using simulated or “predicted” data instead of y.  We then examine where 
in this distribution the original statistic (the one that depends on actual data y) is located. If it’s far out in 
the tail, we conclude that it is very unlikely that our observed data could have been generated by our 
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specified modeling structure.  “Far out” means that the area that’s left in the tail, i.e. the p-value, is small. 
As a rule of thumb, a p-value of 0.05 or smaller would be interpreted as evidence against a given model. 
 
In most cases, our construct of interest will be a function of both y and parameters θ .  Call it ( ),T y θ .   
A popular example in regression analysis is the Skewness statistic (sk), given as 
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If our original assumption of normality for regression errors is correct, we would expect sk to lie close to 
zero.   
 
To test this assumption (and thus the appropriateness of our model) we start by generating a posterior 
predictive distribution of |sk y following exactly the steps outlined above for PPDs: For each draw of rβ
from the original Gibbs Sampler, compute rsk  using (8) with actual data y and X.  The result is the 
posterior predictive density of sk, i.e 
 
( ) ( ) ( )| | |p sk p sk p d= ∫

θ

y θ θ y θ   (9) 

 
We now repeat this process, but now, for each rβ and 2

rσ , we first draw N observations of from 

( )2, , 1...n i Nσ′ =ix β .  (N is the original sample size). That’s our “simulated data” for round r.  Call the 

resulting vector *
ry .   Use this to compute the skewness *

rsk .  Repeat this process R times.  The result is 
the posterior predictive distribution of sk based on simulated data, i.e. 
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We now have two options to assess if our regression model, with its normality assumption, is suitable for 
our actual data.  First, we can take all R draws from (9) and (10), and compute the difference 
( )* , 1...r rsk sk r R− = .  The resulting distribution of differences should be centered and tight around zero if 
our model is correct (i.e. fits the underlying data well, as judged by the skewness criterion).   
 
The second and more formal approach is via PPPs.  This requires a point estimate of sk|y , and we 
generally use the mean, i.e. 
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We now plot the density of sk* and examine where ( )|E sk y is located relative to this distribution.  If it’s 
“far out” in one of the tails, our model is unlike to fit the observed data. Formally, we can compute a 
numerical PPP value as 
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( ) ( )( )*min( ,1 ) where | |PPP x x x prob sk E sk= − = >y y  (12) 

R script mod6_4b provides an example.   
 
Highest Posterior Density Intervals (HPDIs)  
 
HDPIs are another tool for examining posterior outcomes and for model comparison when the marginal 
likelihood is difficult to compute or when the model uses improper priors, in which case a model 
comparison based on marginal likelihood may not be permissible. 
 
If used for model comparison HDPIs are geared towards the comparison of nested models.  A nested 
model is one that can be derived from an unconstrained (full) model by imposing linear restrictions on 
some of the parameters.  The most common case is setting one of the slope coefficients in a regression 
model to zero (i.e. “dropping a regressor”). 
 
We start with the definition of a “credible set” C for a parameter, a set of parameters, or a function of 
parameters.  Suppose that a parameter vector β  of length k can take any real value for all its elements, i.e. 

kR∈β . Let ( )gω = β be some m-vector of functions of β , defined over a region of Ω , with m k≤ . Let 

C be a region within Ω , i.e  C ⊆Ω .  Assume you have derived the posterior density of ( )|p ω y .  Then a 

( )100 1 %α− credible set with respect to ( )|p ω y is given by 
 
( ) ( )| | 1

C
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The simplest example is the credible set for a single parameter, also called “credible interval”.  Consider 
parameter β  with posterior density ( )|p β y .  So in this case ( )gω β= =β .  Then C is the interval [a b], 

such that β falls within these bounds with probability ( )1 α− . As for classical confidence intervals, we 
usually set 0.05.α =  Thus: 
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b
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Typically, there are numerous such intervals for a given parameter.  We usually choose the one with the 
smallest area .  This makes the credible interval the “highest posterior density interval” (HPDI).  HPDIs 
are often reported along with posterior moments and convergence diagnostics as part of the posterior 
output. 
 
So the first and foremost purpose of a HPDI is to find the bounds a and b for a specific parameter, such 
that we can be ( )100 1 %α−  sure that the parameter lies between them.  If ( )|p β y  is unimodal and 
symmetric the 95% HPDI is simply the interval between the 2.5th and the 97.5th percentile, what Gelman 
et al (section 2.3) refer to as “central posterior interval”.  These percentiles are usually known for 
common densities (e.g. -1.96 to 1.96 for the standard normal), or can be easily computed analytically.  
However, the exact form of ( )|p β y  is usually unknown.  This requires the derivation of the HPDI via 
simulation and empirical frequencies.   
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Second, the HPDI can be used as an ad hoc method (i.e. a method that is not firmly rooted in probability 
theory) to test linear model restrictions.  For example one might consider a model for which cβ = (some 
constant, often zero).  If the HPDI for β does not include c, this would provide informal evidence against 
the constrained model.  Similarly, for any scalar-valued linear restriction involving several parameters, 
say c=Rβ , we can first derive the posterior density ( )|p Rβ y , and examine if the corresponding HPDI 
includes c.  See script mod6_4c for an example of HDPI computation. 
 


