
SCRIPT MOD2S1A: MAXIMUM LIKELIHOOD ESTIMATION WITH NUMERICAL

GRADIENT AND HESSIAN

Set basic R-options upfront and load all required R packages:

1. Load and describe data

This is our wage data set from script mod1_2b. We originally estimated a CLRM model based on
these data via OLS. Now we’ll do the same via MLE. Here we use R ’s built-in optim function to
find the MLE solution.

Since I saved the data in R format last time, I can call it in via the ”load” command. To be
specific, I saved it as: save(data, file = "c:/Klaus/AAEC5126/R/data/wage1000.rda"). This
means that the object I saved was ”data” (the actual data set), and the destination was workspace
”wage1000” in my ”c:/.../data/” folder. A workspace is almost like a special R folder within a
windows folder. It can hold many objects of different type under a single name. Accordingly, the
load command is as follows:

R> load("c:/klaus/AAEC5126/R/data/wage1000.rda")

Recall the variable definitions:

Table 1. Variable description

pos. variable description

1 wage hourly wage (1995 dollars)
2 gender (1= worker = female)
3 race (1= worker = non-white)
4 union (1 = worker = unionized)
5 education years of education
6 experience years of work experience
7 age age in years

2. Define Components for Optimization

First, define all components that don’t need to be updated during MLE optimization upfront to
conserve on computing time.

R> names(data)[1]<-"wage"

R> names(data)[2]<-"gender"

R> names(data)[3]<-"race"

R> names(data)[4]<-"unionmember"

R> names(data)[5]<-"education"

R> names(data)[6]<-"experience"

R> names(data)[7]<-"age"

R> attach(data)

1

R> n<-nrow(data)

R> X<-cbind(rep(1,n),gender,race,unionmember,education,experience)

R> k<-ncol(X)

R> y<-matrix(log(wage))

R>

Next, we need to define the log-likelihood function to be fed into the optimization routine. This
function (let’s call it CLRMllh) will take a vector of parameters as input (call it x) and return the
value of the sample log-likelihood. In fact, since R ’s optim routine actually minimizes the llhf, we
need to return the negative value of this function to achieve maximization.

Note that for the error variance σ2, we’ll send in a starting value for the std, then square this term
within the opt. routine to keep it positive. In other words, we’ll work with the variance during
optimization, but the optim routine will return the standard deviation.
Note also it’s important for the parameter vector to be the first function input.

R> CLRMllf<-function(x,y,X,n,k){

+

+ bm<-x[1:k]

+ sig2<-x[k+1]^2 #square to keep positive

+

+ llf<- -(n/2)*log(2*pi)-(n/2)*log(sig2)-((1/(2*sig2))*t((y-X%*%bm))%*%(y-X%*%bm))

+ # sample log-lh for the CLRM

+

+ # Note we could have also used R's built-in function "dnorm" to

+ # quickly evaluate the sample log-lh

+

+ return(-llf)

+ }

Now we need starting values (collected in vector x0 for all of our model parameters, i.e. the slope
coefficients and the error variance. We could use the OLS results, but that would make it ”too
easy” for the MLE optimization routine (since the OLS and MLE solutions are asymptotically
equivalent). Instead, I will use ”perturbed” OLS starters.

R> bols<-solve((t(X)) %*% X) %*% (t(X) %*% y)# compute OLS estimator

R> e<-y-X%*%bols # Get residuals.

R> SSR<-(t(e)%*%e)#sum of squared residuals - should be minimized

R> s2<-(t(e)%*%e)/(n-k) #get the regression error (estimated variance of "eps").

R> Vb<-s2[1,1]*solve((t(X))%*%X) # get the estimated variance-covariance matrix of bols

R> se=sqrt(diag(Vb)) # get the standard erros for your coefficients;

R> tval=bols/se # get your t-values.

R> x0<-0.7*c(bols,s2)

3. Optimization

Now we feed everything into the optimization routine and set the optimization parameters.

R> opt<-optim(x0,CLRMllf,gr=NULL,y,X,n,k,

+ control=list(maxit=1000,abstol=0.000000001,trace=1),hessian=TRUE)

2

The inputs are as follows:

Table 2. Optim inputs

element description

x0 vector of starting values
CLRMllf function to be optimized (user-defined)

gr=NULL no analytical gradient function provided (required for some algorithms)
y,X,n,k remaining arguments to be fed into user function

maxit=1000 maximum number of iterations allowed
abstol=0.0001 tolerance level on change in llf value for convergence

trace=1 show current LLH value for each 10 iterations (default) in console
hessian=TRUE generate numerical Hessian matrix as part of output

The output (which we labeled opt) is a collection of the following objects:

opt$par vector of parameter estimates
opt$value value of the llf at convergence
opt$counts number of function and (if applicable) gradient evaluations
opt$convergence convergence code; ”0”= successful convergence, ”1”= maximum number of iter-
ations reached, all other codes are bad news as well.
opt$message Any other info returned by optim

opt$hessian Symmetric Hessian matrix

Lets capture these elements. Note that the square root of the diagonal of the inverted Hessian
returns the standard errors for all model parameters. Let’s compare OLS and MLE results. Any
discrepancy should vanish if you lower the abstol value in optim.

R> bm<-opt$par #this includes sigma

R> sig2<-bm[k+1]^2

R> H<-opt$hessian #already in negative form

R> sem<-sqrt(diag(solve(H)))

R> tm<- bm/sem

R> ttols<-data.frame(col1=

+ c("constant","gender","race","unionmember","education","experience"),

+ col2=bols,

+ col3=se,

+ col4=tval)

R> colnames(ttols)<-c("variable","estimate","s.e.","t")

R> ttmle<-data.frame(col1=

+ c("constant","gender","race","unionmember","education","experience","sigma"),

+ col2=bm,

+ col3=sem,

+ col4=tm)

R> colnames(ttmle)<-c("variable","estimate","s.e.","t")

R> ttolsx<- xtable(ttols,caption="OLS output")

R> digits(ttolsx)<-3 #decimals to be shown for each column

R> ttmlex<- xtable(ttmle,caption="MLE output")

3

R> digits(ttmlex)<-3

R> print(ttolsx,include.rownames=FALSE,

+ latex.environment="center", caption.placement="top",table.placement="!h")

Table 3. OLS output

variable estimate s.e. t
constant 0.831 0.083 10.067
gender -0.230 0.030 -7.630
race -0.140 0.043 -3.274
unionmember 0.163 0.041 3.931
education 0.106 0.005 19.814
experience 0.013 0.001 10.055

R> print(ttmlex,include.rownames=FALSE,

+ latex.environment="center", caption.placement="top",table.placement="!h")

Table 4. MLE output

variable estimate s.e. t
constant 0.823 0.082 9.994
gender -0.228 0.030 -7.590
race -0.139 0.043 -3.245
unionmember 0.165 0.041 3.996
education 0.106 0.005 19.962
experience 0.013 0.001 10.127
sigma 0.473 0.011 44.724

The estimated error variance for the OLS model is 0.225.
The estimated error variance for the MLE model is 0.224.
The value of the log-likelihood function at convergence is -670.894

R> proc.time()-tic

user system elapsed

2.21 0.14 2.36

4

