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Introduction

The Generalized Linear Regression Model (GLRM)ad#ffrom the CLRM in the structure of the
variance-covariance matrix of the error vecatorSpecifically, we no longer have spherical disturdes
(independent errors that all share the same vajahat error that may be potentially correlated aar
follow distributions with different variances. TIBLRM in its generic form can be written as:

y=Xp+e E(e)=0 E(eg')=Q 207 | (1)

nxn nxn
Thus, the error vector still has a mean of zerojtswariance-covariance matrix now takes thersegs
form with theoretically up tm(n+1)/2 unknown parameters. Naturally, with onlpbservations
estimation of that many additional parametersfisasible. We usually follow one of two strategi@:
Claim complete ignorance about the structur€ofind use robust estimation methods to still derive
consistent estimates of coefficients, or (ii) AssuitmatQ has a simple structure with only a few

additional parameters (example: clusters of etnakg& separate variances, but not each individuat er
term). We'll return to these estimation stratediebw.

Properties of the LS Estimator in Presence of Non-spherical errors

The above model violates CLRM assumption # 4 (“hskedasticity, non-autocorrelation”). Let'’s first
examine how this affects the finite sample propsrtf the LS estimator:

E(b)=p+ E((X‘X )X 's) =p "
V(b) = E((X'x )X "g'X (XX )'1):(x'x )X ax(xx)™?

The LS estimator remains unbiased since the geratiah of the errors’ variance does not affect the
uncorrelatedness of with €. However, the finite variance bfnow takes a very different form

(compared toaz(X'X)_l), which implies that the OLS variance is biasethia case. This, in turn,

produces biased standard errors of coefficientsamdiers any finite-sample hypothesis tests (t, F)
unreliable.

The asymptotic properties of the LS estimator folthis pattern:

bin(ﬁ,%Q'lpIim(%X’QX)Q'l) whereQ = pIin(%X’X) (3)



In other wordsp is still consistent, but its asymptotic variangdiased. This results in misleading
asymptotic standard errors and hypothesis tests.

The Generalized Least Squares (GLS) Estimator

Let's assume for a moment thét is fully known. In that case we can use a singpkension of the
CLRM estimation framework. Conceptually, the beat to show this is as follows:

For ease of comparison with the CLRM case firstdia€ into g?Q (this is trivial — you can always

factor out any scalar from any matrix or vectoFhen factor the inverse dd into P'PwhereP is itself
ann by n symmetric square matrix, using results from spéd®composition (see Matrix Algebra
Tutorial, p. 14). Then pre-multiply the CLRM B~ this will reinstate the spherical properties$haf
disturbances - and use OLS on the transformed mddaemally:

y =X"p+e where y =Py, X =PX, ¢ =Pg,
E(ze) =Q=0Q PP=Q" (4)

E(e') =PE(e) =0, E(s*s*’) =PE(ee')P = POP = ? PP*P*P=¢” |

Then the GLS estimator is derived as

boLs = (x*’x* )_lx* Yy =(XPPX) X PPy =(x 'sz'lx)_lxn'ly (5)
This estimator has the following general properties

E(bes) = E((X’Q'lx)_lx’ﬂ'lXBj + E((X'Q'lx)_lx’ﬂ'lsj =B

-1

\ (bGLS ) = E((X'Q'lX)ﬂX'Q'lss'Q'lX (X 'Q '1X)_1) = (X'Q'1X) (6)
beys in(B,(X'Q'lx)_l)

Thus,bg,s is unbiased and consistent. It is also asympaibfiefficient. It is also the minimum variance
linear unbiased estimator, i.e. it is “BLUE” foretlgeneralized regression model. Specifically, the
“correct” variance of the OLS estimator in (2) Wik less efficient than V{bs) (see scriptrod4s2a for
evidence)

Again: Keep in mind that for the above exposition we as=dithat all elements if2 are known, i.e. they
are not parameters to be estimated. Only the flaemeters (i.e. the elementspgfhad to be

estimated.



The Feasible Generalized Least Squares (FGLS) Estimator

The full content of@Q will be known only in very few applications. Mooften we have a general idea
about the structure d2 and assume that it is a function of just a fewitimtthl parameters, i.e.

Q =Q(9). For example, in many time series applicationspecify

1 ¢ ¢2 ¢n—l_
, ¢ 1 ¢ - P2
Q= ¢2 ¢ 1 .. ¢”‘3 , (7)

_¢n—l ¢n—2 ¢n—3 1 |

which adds only a single additional parame) fo the model. Another example is group-wise

heteroskedasticity, where a limited number of btofde “clusters”) of errors share different variaac
Alternatively, the elements d2 may be assumed to be a combination of observedadat a few
unknown parameters. For example, under heterosteitiawe often assume that the variance of
observation’s error term is itself a function of attributesasiated with that observation, i.e.

o’ =1(z,y) and

g? 0 0 O
o=| O gz 0 0 8
0 0 0 d?

Whatever the assumed structureSdf FGLS proceeds in the following 2 steps:

1. Derive a consistent estimator fox, i.e. Q= Q(é) .

2. Use this estimator in the expression iy s (see (5)).

Formally:

~ 1 -1 ~ ~ ~
broys =(X'2*X) X'Q%  where 2=0() 9)
For most “standard settings” the resultimg, s will have the same desirable asymptotic propedses

bGLS.

Alternatively, we can useMaximum Likelihoodpproach to simultaneous estimét@nd . Such a

“full-information maximum likelihood” (FIML) approeh is generally more efficient in a small sample
context.



However, if our assumptions regarding the structfir® are incorrect, the same problems as presented
for the OLS estimator arise. Some researchersfirerprefer not to make any assumptior¢®dnbut
instead useobust estimatioio derive consistent results. This is our negido

Robust Estimation for the GLRM

The general intuition for robust estimation is & @n expression fa@ that does not require knowledge
or estimation of additional parameters, but stithas for the consistent estimation ofj( There exist a
variety of robust estimators for GLRM’s. Their ekéorm depends on the nature of the “generalirétio
at hand. This immediately implies there is no “@iteall” robust estimator. For example, for tese of
heteroskedasticitwhere Q takes the form of (8), White (1980) has shown thater very general
conditions the term

2 _ _ _ n _

¥ (6) =), 00X 7 = )| S ) 10
i=1

is a consistent estimator for the true asymptofiz)V Thus, using this estimator, which is basedhen t

OLS residual®’s , corrects the shortcomings of the naive OLSrepagh. This works well in a large

sample context, but the properties of this estimatoler small sample sizes are still disputed.

Note that for programming purposesRryou can use

n

> &xx =XEX where
i=1

€ 0 0 0 ,

0o & 0 o = di ag(e*e) (1))
E=| 5 &

0 0 0 &

The analogous version of thigbust or “White” estimator(sometimes also called “sandwich estimator”
or Huber-White sandwich estimator) for MLE is

PN AN\l A A ~\-1

Va(B)=(-R) 66(-A) ", (12)
where H is the Hessian matrix at the MLE solution, @ds then by k matrix of individual gradients at
the MLE solution (the samé>" we used earlier in this course).

The White estimator can be used in any context hés suspected that the spherical distribution

assumption of the CLRM is violated. It has begreeglly popular to control for heteroskedastioesr—
our next big topic.



Dealing with Heteroskedasticity

Introduction

Heteroskedasticity (HSK) is a common occurrenaaamy real-world applications, where individual
errors or clusters of error terms have differemtareces. In many cases this difference in variaige
related to observed data, which, if known, helpdresk the problems that arise when OLS is used to
estimate such data.

For example, letting regression residuals proxyttierunknown error terms, in a regression of crealitl
expenditures on some explanatory variables, thduals show a wider spread as income increases, cet
par. (Greene's Example 9.1). In other wortherwise identical individualkave similar expenditures
when their income is low or moderate, but vastffedent spending patterns when income is large.
Intuitively, this makes sense as individuals wihhincome have the option to spend more, whils¢ho
with lower income are somewhat constrained in tegrenditures.

Other examples with notorious HSK issues are regres of home prices on home features (larger, more
expensive homes with otherwise identical featueegla lot more “wiggle room” to include features no
captured by the regression, leading to pronouneedbility in price), and water or energy consuropti

by firms (where variability in consumption geneydlicreases with firm characteristics that are not
included in the demand function, usually relatefirta “size”).

However, any difference in error variances falldemHSK, even when there is no clear “pattern’irgx |
to an observed variable. In the most extreme es#h error term has its own variance, i.e.

g 0 0 O @ 0 0 O
2 0 0 0

E(ee') =Q= (;) . ? = wz .. 13)
0 0 0 o2 0 0 0 w

Writing Jiz as Uch is completely optional, but makes it easier to caraghe resulting model to the

basic CLRM. If we make this arbitrary scaling bfcammon” o2, we usually also implement a second
arbitrary scaling and assume that the resultingweights sum to the sample size. We then have

n n n
> @ =n, suchthatr (@) =) 07 =0"> @ =nc?, as would be the case for the CLRM.
i=1

i=1 i=1

Recall that under any violation of the sphericabeassumption, such as HSK , the generic OLS
estimator is unbiased and consistent, but its meeid@s biased and inconsistent (producing misleadin
standard errors, t-values, F-tests etc.).

Testing for HSK

Residual versus Predictor Plots

A simple first check to see if HSK might be presengour data is to plot the regression residugksrest
explanatory variables that could possibly be linte#SK. For a well-behaved CLRM we would expect
the plotted residuals to randomly vary around zdong the entire support of any predictor variat¥gy



systematic pattern in this plot (e.g. the often observed “funnel shape”) would be indicative of HSK
(assuming we don't have any other mis-specification issue such as O.V. problems etc).

See scriptand4s2b, ¢ for examples.

White’s General Test
This test is based on the following intuition:a‘l2 =o°[i , the conventional estimated asymptotic
variance foib, s° (X'X)_l, should be a consistent estimator for the correct asymptotic varianaendér

HSK, i.e. (XX) ™ (X'@X)(XX)™. Thus, the test is based og ? = 00i vs. Hy 02 # o*for at least
one ‘i".

The advantage of this test is that it is very general, i.e. it simply tests for “any HSK” and not for a specific
pattern of HSK (as will the next test). However, this is also a weak point as it leaves the alternative
hypothesis very vague, i.e. the testrisfi-constructiveby default. If we reject the null, there is no

guidance as to which form of HSK is present and how we can efficiently correct for it. Also, a rejection
of the null may simply be indicative of other mis-specification problems, such as O.V.s.

Traditionally, if the test rejects the null (and we don’t run any other more “prescriptive” tests), we would
directly proceed toobust estimatiorfsee below).

Practical Implementation of White’s test:

1. Run your regression of interest and capture the residuals.

2. Run an auxiliary model by regressing siyglaredresiduals against all variables in the origiXal
plus all of these variables squared (except for the constant and any 0/1 indicators, of course), and all
unique cross-terms. Capture fRefrom that regression.

3. ComputenR, wheren is the sample size. Under the null this statistic will follow a chi-squared
distribution withk-1 degrees of freedom, whetés the total number of regressors in the auxiliary
model.

See scriptrod4s2c for an example of the White-test
Which variables to include for the White test?

It can be tricky to construct the augmented data matrix for the White test, especially when theXoriginal
contains indicator ("dummy") variables, and / or squared terms, and / or interaction terms.

The basic rule is to include in the augmented data matrix (let's é&)ltihe following:

1. The entire originaX, including the constant term
2. The squared terms for all variables in the originaxtept:

a. The constant term

b. Any indicator variables or interactions of indicator variables (So any variable that can
only take values of 0 or 1, regardless how they were constructed in the original model)

3. Any permissible 2-way interaction that can be constructed from the original



The tricky part is the definition of "permissibl&t the interaction terms. The notes on workinthwi
indicator variables under "additional topics" om oaurse web site will provide some guidance is thi
respect. Basically, we cannot include any intépadierms that would lead to perfect collinearitiesX .
This immediately implies the following restrictians

a) No interactions with the constant term, of course...

b) No interactions that are already included in thgioal X

¢) No interactions for implicit indicators (see welies), i.e. 0/1 variables in the originglthat
indicate exclusive categories (such as "month1gntin2", "month3", etc, or "freshman”,
"sophomore", “junior"”, etc.). Naturally one canbeta "freshman" and "sophomore" at the
same time, so such an interaction would resultvactor of zeros, which, in turn, would
introduce perfect collinearity.

d) No interactions of any other original indicatorattivould lead to an all-zero column (i.e. for
which there simply aren't any observations in thea For example, if one of your original
variables is "female" (O=male, 1=female), and aeotb ("military training" — 0=no, 1=yes),
and you don't have any females with military tnagnin your data, the resulting interaction
would produce an all-zero variable — a can't-do.

All other interactions should be included — sed4s2c.

Breusch-Pagan / Godfrey LM Test

This test has a more specific alternative hypothigin White's general test. It examines if indiil
variance terms are related to a specific set ofémesl variables (that may or may not be includetthén
original X). The stipulated HSK model and the hypothesethiotest are as follows:

ol =0* 1 (Za) Zi:|:1 L 4(,i:|
H,:a,=a,=--a, =0 (and, therefore g’ = g* Cli (14)
H, :at least one of the 's is not zero

A convenient feature of this test is that the fiorctf () does not need to be explicitly defined, i.e. the

test is invariant to its explicit form. Technigathe test is a Lagrange Multiplier (LM) test. Gnedp.
166) gives a convenient form for the test statistic

1 ! r 1o, 2 n %2
LM =5(gZ(ZZ) Zg)~)(J where 9= ol -1 and J=k, - (15)

As beforege denotes the vector of residuals from the origibab model. If the null is rejected a
consistent model incorporating this HSK pattern loarestimated via FGLS or MLE (see examples
below). See scriptod4s2c for an example of the BP-test.



The main drawback of the BP test is that it's d@resto the normality assumption for the error term
under small sample sizes. In other words, if ndityna violated, test results can be misleading.
Koenker (1981) and Koenker and Bassett (1982) m®jpomore robust version of the test, based on the
following more robust estimator of the error vadan

\7(fi)=%;(e2 -iner (16)
The test statistic then takes the form of

LM =(2)(e2-i(28)) z(z'z) 2" (e?-i (29) (17)
wheree’ =[¢ & ... €|. Asstated in Greene, p. 166, this modified seatistic will follow the

same asymptotic distribution as the PB statistilenmormality. It provides a more powerful test in
absence of normality. It is algebraically identicathe White test if the elements mare the same as

those used in the White test (i.e. origiKalsquared terms, and cross-terms).

Robust Estimation

If these tests suggest clear evidence of HSK théysinhas two basic options: (i) remain ignorardgiab
the actual form or cause of HSK (i.e. the struchfr€ ) and switch taobustOLS or MLE, or (ii)
assume a specific form of HSK (with guidance fréva BP test perhaps) and estimate a HSK-adjusted
model via FGLS or MLE.

For option (ii), if the assumption on the underfyiiorm of HSK is correct, the HSK-adjusted moddl wi
be more efficient than a robust model. Howevehéfassumption is incorrect (and HSK takes amdiffe

form) Q will be mis-specified, leading again to an incoteis estimate of/(bFGLS)or V(B)

For this reason analysts often prefer to work &ithss efficient but consisterbustmodel. For the
GLRM robust variance estimators for the general H8Ke are given in equations (10)-(12) in the
previous Lecture notes. Scriptd4s2c provides an example for the OLS case.

HSK Case Studies

Multiplicative HSK

This follows closely Greene pp. 170-175. The GLRih multiplicative HSK (mHSKyvas first
proposed by Harvey (1976). We will distinguishvibe¢n the main regression of interest and the
skedastic functign.e. the expression that links individual variarierms to observed data. For the
mHSK model, the skedastic function can be written a

o? =exp(zy) - loga?) =2y (18)



As before we assume thaincludes a constant term, so ttet = exp( yl) can be (conveniently)
interpreted as “baseline variance”.

Using FGLS, we perform the following steps:

1. Estimate the main regression via OLS and capté@regbiduals
2. Using again OLS, regreﬂeg(qz) againstz, . This yields an estimate qf (call it ).

3. Estimated? =exp(zy)+ 1.270: (the last number is Harvey's proposed correctasmtfor the
estimated constant)

o7
3

4. Define Q= , and use it in the expression for the GLS estimatps.

See scriptrod4s2d for an example.

Groupwise HSK

Assume you have an application where your datdeativided into two or more groups (similar to what
we had for the “Chow” test, but with possibly mdinan 2 groups). For example, you may have monthly
observations on water consumption for a set oflfioteéach subset of observations for a specifielhot
would then qualify as a “group”. Another exampleuld be sets of observations on treatment outcomes
associated with different hospitals. All obserwas for a given hospital would constitute a group.

Generically, assume there gre 1...Ggroups represented in your data, withry,.. .rz denoting the
corresponding number of observations. Group-wiSK lresults if all error terms associated with ayk&n
group share the same variance, but these varidiféersacross groups. Formally:

E(ee')=diag of o} - of o o - 0 - of o0f - 0F (19)

n, terms n, terms ng terms

As with any form of HSK you have the option to usbust OLS with White-corrected standard errors.
Alternatively, there is a particularly convenief@IES estimator available for this case:

A straightforward FGLS version is as follows:

1. Estimate the main regression via OLS and capt@edsiduals.

o _ & . . . :
2. For each group, computeg =g—ég whereeg, is the OLS residual vector associated with grgup
ng
: O — i A2 A2 22 22 ~2 ~2 ~ 2 ~ 2 ~ 2 o
3. Define Q -dlag[a1 oy - 0, 0, 05 - 05 - 05 05 - O'G] and use itin
n, terms n, terms ng terms

the expression for the GLS estimalbay s.
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To test for groupwise HSK, you can use the PBuést Z=[i d, d, - dg,], whered,is an
indicator variable taking the value of one if obsgioni belongs to group g, and zero otherwise. The use
of “G-1" subscript for the last term simply serves asraineler that one group needs to be omitted flom
to avoid perfect collinearity.

See scriptrod4s2e for an example.

Working with aggregate dependent variables — tlse ch known HSK

In Macroeconomics and regional economics we ofterkwith aggregate data for both dependent and
explanatory variables. For example, assume thagye interested in relating disposable incomedeta
of micro-and macroeconomic regressors. Assumehgoa data for Counfy= 1...J. At the individual
level, the model is given by

Y =xiBtg g ~ ”(0'02) (20)

However, we often don't have individual-level ddtesstead, we often work with aggregate data.
Consider a regression of average per-capita dipmsecome for each county in the U.S. on a set of
explanatory variables (which themselves may or maybe aggregated):

n;
Vi =XB+E =525 (21)

:l,_‘

This model is heteroskedastic by default, sincénaee

o? (22)

=\ 14 42
V(gi)_ni?nia =

= ||—\

If we know each County’s total population (which usually do) we can derive a consistent and efficie
estimator vidWeighted Least Squar@d/LS). This is similar to our FGLS from abovegcept the
individual variance weights are not a function xplanatory variables and additional parameters, but
simply a function of individual “weights”, here ti@unty population.

We know that

2le

Q=0? "o (23)

We than simply use this variance matrix in our Gafnula.



