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Omitted Variables, Instrumental Variables (IV), and Two-Stage 
Least Squares (TSLS) 
Greene Ch.8, 12, Kennedy Ch. 9 
R script  mod4s1a, mod4s1b, mod4s1c 
 
Assumption 3 of the CLRM stipulates that the explanatory variables are uncorrelated with the error term. 
In many real-world applications this assumption will not hold. Examples include: 
 
• Omitted variable (a variable that affects y AND is correlated with one or more regressors is omitted 

from the model).   
• Measurement error on one or more regressors 
• Lagged dependent variables used as regressors (“autoregression”) 
• Simultaneous equations 
• Models with sample selection 
 
All these conditions will result in the same econometric problem: biasedness and inconsistency of the 
OLS (or MLE) estimator.  For this chapter we will focus on least squares (LS) estimation and the 
remedial methods of  IV and TSLS that have been devised for the LS setting. 
 
Orthogonality and Covariance 
 
In the following, we will make ample use of the concepts of "orthogonality" , sample covariance, and 
sample variance.  Let's take a closer look at these terms. 
 
Consider two nx1 vectors x and z.  Orthogonality implies that  
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The sample variance of x is given as 
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The last expression will be useful below.  The sample covariance between x and z can be written 
as: 
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Again, the last expression will be useful later.  
 
It follows that orthogonality alone does NOT imply a zero covariance. For a zero covariance we 

need either 
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=∑ ∑ ∑ (a somewhat unlikely condition), or either of the sums in the last 

term is zero in addition to orthogonality.  By the same token, strictly speaking a zero sample 
covariance does not imply orthogonality. However, orthogonality likely holds in that case, 

otherwise we would need again 
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We should also note that the sample variance converges to the population variance (call it 2

xσ ) as 
n goes to infinity. We can show this via convergence in mean square error: 
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Thus ( )2 2lim x xn

E s σ
→∞

= .  Similarly, it can be shown that ( )2lim var 0xn
s

→∞
= . Thus 2 2plim x xs σ= .  See also 

Greene p. 67-68. By analogy, the sample covariance approaches the population covariance (call 
it xzσ ) under increasing sample size.   
 
In the following, when we examine the covariance (or correlation) between included regressors 
and the components of the error term we usually think of this as the population covariance.  
However, some concepts are more clearly illustrated using the sample covariance.  Either one is 
suitable in illustrating the O.V. problem. 
 

The Omitted variable problem 
 
Consider the stipulated model = +1 1y X β ε  and the true model = + +1 1 2 2y X β X β ν . Asssume for now 

that ( ) ( )E E′ ′= =1 2X ν X ν 0 . The first model, estimated via OLS, produces 
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The last term in (5) will only be zero if the two X-matrices are perfectly orthogonal or if =2β 0 , i.e. the 
omitted variables have no effect on y (which, of course, we ruled out upfront when we wrote down the 
"true" model). Alternatively you can think of each column in 1.2P  as a set of LS coefficients from a 
regression of the corresponding column of 2X  on the entire 1X  matrix.  In other word, the stipulated or 
"flawed model" will lead to unbiased (and consistent) estimates only if the included regressors ( 1X ) are 
orthogonal (and thus, in essence, uncorrelated) with the excluded variables ( 2X ) and thus with the error 
term = +2 2ε X β ν . 
 
Here is a closer look at this situation using a simple stipulated model with a constant term and a single 
regressor, and a single omitted variable.  Thus, we have 
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This implies 
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where we use the results from (2) and (3) in the last transformation.  This shows some additional details 
for the omitted variable problem.  If the sample covariance between x and z is zero, only the intercept will 
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be biased.  If x and z are orthogonal (or have zero covariance) and 
1

0
n

i
i

z
=

=∑ , neither term will be biased.  

Thus, the omitted variable problem can be quite subtle even for this simple case,  assuming 0γ ≠ .   
 
In a multivariate regression model, O.V. bias will generally affect ALL coefficients in unknown direction, 
even if there is only one O.V. correlated with only one regressor!  This is due to the usual correlation 
between included regressors (i.e. ( ) 1−′1 1X X will usually be a full k by k matrix with nonzero elements) .   
 
Returning to the general case, we can alternatively express this problem as a violation of Assumption 3 of 
the CLRM, i.e.  
 
( )E ′ = ≠X ε γ 0  (8) 

 
As a result, the OLS estimator is biased and inconsistent (i.e. asymptotically biased), i.e. 
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R script mod4s1a provides an empirical illustration of the O.V. problem using the hedonic property value 
data from PS3, Q3. 
 

The Instrumental Variables (IV) Estimator and TSLS 
 
Assume there are k1 columns of (n by k) matrix X that are potentially correlated with the error term.  We 
will call these variables “troublemakers”.  Assume the remaining k2 columns are “clean” with respect to 
O.V. problems (although not necessarily uncorrelated with the remaining columns in X).  Assume that for 
each troublemaker column jc we can find one or more variables that are not in the original models, and 

that are highly correlated with jc , but not with ε .  Such variables are called “instruments”. Instruments 
are “crutches” that ultimately allow us to derive the effect of the original X on y without incurring O.V. 
bias.  Thus, clean, or "valid" instruments are not correlated with the outcome variable y other than 
through their correlation with jc . 
 
Let matrix Z collect all “clean” columns of the original X, plus the instruments.  Assume Z has 
dimensions n by l, with l k≥ . 
 
Next, consider the following 2-step procedure: First, the troublemakers in X need to be purged of their 
O.V.-causing effects.  Second, the purged X is used in the originally desired regression. 
 
The first step is accomplished by regressing each column in X (troublemaker or not) against Z and 
compute fitted values. This will leave the clean columns of X unchanged, but leaves the troublemakers 
with only the effects that can also be explained by Z.  Formally: 
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( )-1ˆ ′ ′= =ZX P X Z Z Z Z X   (10) 
 
In the second step, X̂ is used in lieu of X in the original regression, and OLS is applied.  This leads to the 
Two-Stage-Least-Squares (TSLS) Estimator 
 

( ) ( )( ) ( )
11 1 1ˆ ˆ ˆ −− − −′ ′ ′ ′ ′ ′ ′ ′= =TSLSb X X X y X Z Z Z Z X X Z Z Z Z y  (11) 

 
This expression can be simplified in the special case where l = k, i.e. each troublemaker is replaced by 
exactly one corresponding instrument. In that case, ′Z X is a square matrix with a (presumably) well-
behaved inverse, and we can write 
 

( ) ( )( ) ( ) ( )1 1 1 1− − − −′ ′ ′ ′ ′ ′ ′ ′= = =TSLS IVb Z X Z Z X Z X Z Z Z Z y Z X Z y b  (12) 
 
In this special case the TSLS estimator is usually called “IV estimator” or bIV.  However, the two terms 
are often used interchangeably.  Just remember that the expression in (11) always holds, while (12) only 
holds if l = k.   
 
As shown in Greene, Ch. 8, bIV (used in the general sense of bTSLS) is consistent and asymptotically 
normally distributed.  It’s asymptotic variance can be estimated by 
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Note that the original X, not X̂ , is used in the computation of the residuals ε̂ ! 
 
The asymptotic variance of the TSLS estimator can shown to be “larger” than that of the OLS estimator, 
especially when the instruments are “poor” (i.e. not highly correlated with the troublemaker(s)). In other 
words, the TSLS estimator is less efficient than the OLS estimator.  However, efficiency is not a very 
meaningful virtue if the estimator is inconsistent! 

Specification tests for OV-type problems 

Hausman Test (H-test in my jargon) 
The Hausman test is a type of Wald test that examines if the difference between 2 sets of estimates 
flowing from 2 different models, weighted by the difference in their asymptotic variance-covariance 
matrix, is “large enough” to reject the null hypothesis that they are the same. 
 
The rationale is that the first model considered is known to generate consistent estimates under OV-type 
problems or other mis-specification issues, while the second model is inconsistent IF there are indeed OV 
type problems or mis-specifications.  However, the first estimator is always less efficient than the second.  
So if there are no OV-type or mis-specification problems, it would be better to choose the second model. 
If there are OV type problems, we should use the first model (since consistency is generally more 
important than efficiency). 
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For the case at hand the IV (or TSLS) model is “model 1” – consistent under OV-problems, but less 
efficient.  The OLS model is “model 2” – more efficient, but inconsistent under OV-problems.  The H-test 
examines if the two estimators are “close enough” to conclude that OLS is fine, i.e. that there are no OV-
type problems (this is the null hypothesis).  If the weighted difference between the estimators is “too 
large”, the test would reject the null. 
 
The H-test statistic is thus derived as 
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By convention the squared regression error (s2) from the OLS model is used for both variances in this 
formula.  Being a type of Wald test, the test statistic is distributed chi-square with J degrees of freedom, 
where J is equal to the number of “troublemakers” in the original model (i.e. the columns of X that are 
being replaced by instruments). 
 
A common problem that arises with this test is that ( ) ( )ˆ ˆ′ ′−X X X X may not be full rank since there are 

usually some common columns in X̂  and X.  Thus, the inverse of the difference in variances may not 
exist.  To get around this problem the “Moore-Penrose Generalized Inverse” is used instead.  In R, just 
use pseudoinverse (in the corpcor library) instead of solve. 
 

Wu test 
An equivalent test that avoids this “inverse” problem is the Wu test.  It proceeds in 2 steps: 
 
1. Pick the troublemakers from X and collect them in a new matrix, say *X .  Regress each column in 

*X against Z and obtain the fitted values, i.e. generate ( )-1ˆ ′ ′=* *X Z Z Z Z X . 

2. Regress y against the original X and ˆ *X .   
 
The null hypothesis for the test is that the coefficients for ˆ *X are jointly zero.  A rejection of the null 
would indicate OV problems in the OLS model, and would suggest switching to an IV approach.  If the 
null is not rejected, OLS is fine. 
 
This is implemented as an F-test with (n-k) and J degrees of freedom, where J is again the number of 
troublemakers, here equal to the columns in *X and k is the number of regressors in the final model in 
step 2. 

Examples 

Example 1: OV-type problems through endogeneity 
Endogeneity bias arises when one or more explanantory variables in the main equation of interest are 
themselves directly or indirectly driven by the dependent variable.  This is also known as “simultaneous 
equation” bias.  Often times the variables are linked by some underlying theoretical relationship (in which 
case we can usually anticipate trouble...).  The upshot is that this endogeneity introduces a correlation 
between X and ε , rendering the OLS estimator biased and inconsistent. 
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Script mod4s1b illustrates this effect. It is based on Greene’s (5th edition) example 5.3. 
 
The main equation of interest is a regression of national consumption expenditures at time t against 
national disposable income at time t, i.e. 
 

1 2t t ty dpiβ β ε= + +   (15) 
 
However, the national accounting identity stipulates that national income is the sum of consumption, 
investment, government spending, and net exports.  Thus, at least at the macroeconomic level, income 
may well be driven by consumption.  Let’s assume for simplicity that this relationship is again linear, 
such that: 
 

1 2t t tdpi yγ γ µ′= + + +tx δ   (16) 
 
where xt includes other variables that affect dpit, and tµ is a well behaved CLRM error term.  Plugging 
the first equation into the second, we get 
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For the first equation, this implies that  
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As can be seen from the last term the strength and direction of the link between  dpit, and the error term 
depends on the magnitude and sign of 2γ  and 2β .  
 

Example 2: OV-type problems through measurement error 
 
Assume the correct form of your CLRM equation of interest is given by 
 

*
1 2 2, ,i i iy xβ β ε′= + + +3:k,i 3:kx β   (19) 

 
Further assume that regressor *

2x is measured with error for the entire sample (or at least for more than a 

handful of observations).  We only observe x2.  Assume that the relationship between x2 and 2
*x  is given 

as 
 

( )2~ ,with n µσ= +*
2 2x x μ μ 0 I   (20) 

 
This implies that the measurement error is perfectly random.  Other types of measurement error are 
possible.  Either way, we run into the following dilemma (shown for simplicity at the individual level): 
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Again, we end up with a nonzero correlation between an included regressor and the error term of the 
estimated regression. 
 
Similar problems arise if multiple columns of X are measured with error.  As for the “classic OV case”, a 
single mis-measured variable generally biases all estimated coefficients (unless the mis-measured variable 
is perfectly orthogonal with the rest of X). 
 
The remedy is again to “cleanse” each “troublemaker” with one or more instruments.  In this case, a good 
instrument will be correlated with the troublemaker, but not with either the regression error ( ε ) or the 
measurement error (μ ).  
 
R script mod4s1c  provides an example. 
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