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GLS and Serial Correlation 
Greene, CH. 20 
R script mod4s3a, mod4s3b 
 

Introduction 
 
The phenomenon of serial correlation (often also referred to as “autocorrelation”) arises when regression 
errors are correlated with one or more adjacent errors in a data set.  This usually occurs in any type of 
time series data, where we have repeated observations over time for a given person, household, firm, or 
any other cross-sectional unit.   
 
If serial correlation (SC) is present that OLS estimator exhibits the same flaws as under HSK: While still 
consistent, its variance is mis-specified, and we can’t trust standard errors, t-values, or hypothesis tests.  If 
the “correct” version of its asymptotic variance is used, the estimator still remains inefficient compared to 
GLS or a (correctly specified) FGLS model. 
 
Before we look into the specifics of SC it will be useful to review some basic concepts of time series 
analysis, as presented in Greene’s Ch. 20. 
 

The Analysis of Time Series Data 
 
A typical time series (TS) model relates time-specific observations of the dependent variable to 
contemporaneous (and possibly lagged) explanatory variables, optionally lagged observations of the 
dependent variable, and an error term, often referred to as “disturbance,” “shock” or “innovation”.  Here 
is a simple example: 
 

1 1t y t ty yβ β ε−′= + + +t xx β ,  (1) 
 
where t indicates a specific time period (e.g. day, month, quarter, year, etc.) and xβ contains as many 
elements as xt.   
 
It should be immediately noted that the inclusion of one or more lags of the dependent variable raises a 
whole set of econometric concerns, not just autocorrelation.  For the remainder of this chapter we will 
thus abstract from this case and focus instead on other reasons that may lead to correlated errors.  
 
The conceptual relationship between a “sample” and an “underlying population” is a bit different for TS 
models than for cross-sectional (CS) data (i.e. all models we have considered so far).  For CS data we 
have interpreted a “sample” as a set of random draws from an underlying, much larger, population.  We 
have also assumed that at least in theory, we could repeat the sampling process many times, which 
justifies the notion of a “sampling distribution” of statistical estimators (such as the sample mean, or the 
OLS estimator b).  We have further used the idea that one could in theory increase the sample size to 
“infinity”, which led to the derivation of asymptotic properties of estimators. 
 
For TS models the equivalent to an underlying “population” is the hypothetical “infinite” series, or “TS 
process”: 
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Each TS process is characterized by (1) the time ordering (i.e. the order in which the time periods are 
considered, usually chronological), and (2) the correlation patterns between observations in the sequence. 
The analogous concept to a “sample” in CS analysis is a “time window”, i.e. a set of (usually consecutive) 
observations of yt from t = 1....T, where “t = 1” is just an arbitrary labeling of the starting point.  The 
analog of “repeated sampling” in CS analysis is the notion that we could “draw” an infinite number of 
different time windows from { }t

t ty =∞

=−∞
.  Finally, the analog to “increasing sample size” in CS analysis is 

the notion of an ever increasing time window in the TS context. 
 

Disturbance Processes 
 
In the usual TS setting we assume that the error terms have mean zero and equal variance, but that they 
are correlated across observations, i.e. 
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It is generally assumed that each error term is correlated with all other disturbances.  However, an 
important constraint is assumed for these correlations:  Specifically, for a “well-behaved” time series, we 
assume that for any t, s, ( )cov ,t t sε ε +  is a function only of t s+ , i.e. the “distance” between the two time 
periods, and not of t or s in specific.  This means that, for example, all disturbances have the same 
correlation with their immediate neighbors, the same correlation with disturbances 2 periods ahead or 
behind, and so on.  This key property is called  “stationarity”.  A TS with this property is referred to as 
“covariance-stationary”.   
 
It is common for TS analysis to work with correlations instead of covariances.  Let 

( ) ( ), ,cov , cov ,t t s t t s t s t t s t sε ε ε ε γ− − + += Ω = = Ω = and ( ) ( ) 2
, 0cov ,t t t t tVε ε ε σ γ= Ω = = = .  We can then 

define the autocorrelation between two disturbances as 
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Thus, for the full TS we have 
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where Γ is the auto-covariance matrix and R is the autocorrelation matrix.  Different types of TS 
processes imply different patterns in R.  Perhaps the most frequently analyzed process is a first-order 
autoregression, or AR(1), subject of the next topic. 
 

AR(1) Disturbances 
 
Similar to the CLRM for regression analysis, the AR(1) model is a time-proven “workhorse” for many 
applications.  It is often a very reasonable approximation for much more complex TS processes that 
would be extremely difficult to analyze.  The AR(1) model is characterized by the following properties 
for the disturbance terms: 
 

( ) ( ) 2
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The tµ term is often referred to as “white noise”.  Think of it as the analog to the error term in the CLRM.  
We assume that the tµ ’s are uncorrelated with each other and with any of the tε ’s.  To assure stationarity 
we add the additional stipulation that 1ρ < .  Under this assumption we obtain the following properties 
for tε (see Greene p. 911 for details): 
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The autocorrelation matrix takes the following form: 
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  (8) 

 
Thus, with the stationarity assumption the autocorrelations diminish (“fade”) over time.  If 0ρ > , the TS 
residuals will exhibit clusters of positive and then negative observations.  If 0ρ < , the TS residuals will 
have regular oscillations (= changes) in sign.  See Greene p. 904-906 for some example graphs. 
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Least Squares Estimation 
 
As for HSK, when R (and thus Γ , formerly labeledΩ ) is fully known, GLSb will be the most efficient 
estimator. The OLS estimator will be unbiased but inefficient (if the correct V(b) is used). As a rule of 
thumb, the stronger the correlation between adjacent errors (i.e. the larger ρ ), the greater the efficiency 
gain from using GLS. 
 
Note that in either case we can no longer clearly interpret (and thus use) the t- and F- statistics, since their 
distribution no longer follows t or F, even when tµ follows a normal distribution.  Thus, we need to resort 
to asymptotic theory to implement any specification tests.  Asymptotically, the OLS estimator will be 
consistent for β  and normally distributed, as long as the model does not include any lagged dependent 
variable (which continues to be our ongoing assumption).   
 
In analogy to the “White-corrected” estimator for HSK, there exists a robust (i.e. asymptotically 
consistent) estimator for ( )âV b , based on Newey and West (1987).  As for HSK, this is useful when Ω is 
unknown and there is little guidance as to its general structure.  The NW estimator for autocorrelated 
disturbances with unspecified structure is given as 
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As before, the e-terms are OLS residuals.  L denotes a “lag” of a specific number of time periods.  This 
value has to be chosen arbitrarily.  A larger L would reflect the assumption of a slowly fading correlation. 
In absence of any guidance on this L is often set to 1/ 4T (rounded to the nearest integer) .   
 
See script mod4s3a for an example. 
 

Testing for Serial Correlation 
Basic residual regression 
A simple first check if autocorrelation may be an issue is to regress the OLS residuals on their lagged 
values, i.e using the auxiliary “CLRM” model 
 

1t t te e vρ −= +   (10) 
 
The estimated slope of this regression will be an estimator of ( )1,t tcorrρ ε ε −= . A standard t- or F-test 
can be used to assess significance.  A flat slope would imply no autocorrelation ( 0ρ = ).  
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A scatterplot of residuals vs. lagged residuals may also be illustrative to examine if serial correlation may 
be present. 
 
Breusch-Godfrey LM test 
A refined version of this elementary test is the Breusch-Godfrey LM test.  The test can be used for a set of 
alternative hypotheses, each of which describes a different AR(P) process, P = 1,2, etc.  The null 
hypothesis is always “ 0ρ = ”, i.e. “no autocorrelation.   
 
As a preparatory step to derive the BG test statistic the original matrix of regressors, X, needs to be 
augmented with P columns of lagged residuals from the OLS model.  The first added column contains 
lag-1 residuals, with a “0” added at the beginning to preserve the row dimension of X.  The second 
column has two leading 0’s followed by lag-2 residuals, and so on.  For the AR(1) version of this test 
only the lag-1 residuals need to be added to X.  Calling the augmented X matrix “X0”, the PG test statistic 
is computed as 
 

( ) 1
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( )~ PBG T χ
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0 0 0 0e'X X X X e
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  (11) 

 
This statistic is equivalent to T times the R2 from a regression of OLS residuals e on X0.  Since 0′ =e X  
by the properties of the OLS model, any model “fit” (i.e. a non-zero R2) will be due to correlation 
between current and lagged residuals.  In contrast to the simple residual regression shown above, this test 
procedure controls for possible correlation between X and lagged error terms. 
 
A word of caution: The alternative hypothesis for this test specifies autocorrelation (AR) of order P OR 
Moving Average (MA) of order P.  Correlation plots will usually provide guidance to assess which time 
series process applies.  (We will not consider MA- type processes in this course). 
 
Durbin-Watson Test 
 
This test is specifically designed to examine if the error terms may follow an AR(1) process.  The test 
statistic is given by  
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ˆ2 1d ρ
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  (12) 

 
where te is the vector of original OLS residuals, t-1e  is a vector of lag-1 residuals, and ρ̂ is the estimated 
autocorrelation coefficient from a regression of residuals on lagged residuals (our “basic residual 
regression” from above).  For the denominator, the full T observations of te are used.  For the numerator, 
the first element of te  is dropped to assure compatibility of dimension with the lagged residual vector. 
 
The d-statistic follows a distribution that is different from any we have encountered so far. For each 
combination of sample size T and k (columns in the original X) there are a lower and upper critical value, 
denoted as dL and dU, respectively. The null hypothesis is always: 0 : 0H ρ = , i.e. absence of serial 
correlation.  The researcher has to choose one of  two “one-sided” alternative hypotheses: 1 : 0H ρ >  
(“positive autocorrelation”), or 1 : 0H ρ <  (“negative autocorrelation”).  The use of the critical thresholds 
for test decisions depends on which H1 is specified. 
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For 1 : 0H ρ > , the null is rejected if d<dL and not rejected if d>dU . The test is inconclusive if 

L Ud d d< < . 
 
For 1 : 0H ρ <  the null is rejected if d > 4-dL and not rejected if d < 4-dU . The test is inconclusive if 
4 4U Ld d d− < < − . 
 

Feasible GLS 
 
If tests reveal that the regression errors follow an AR(1) process, we immediately know the structure of 
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εε Ω R R , where R takes the form of (8). Note that we revert to using 2

εσ  instead of 

0γ to denote the variance of tε  for consistency with the notation in section 19.9 of the textbook.   
 
Step 1: Find a consistent estimator of the autocorrelation coefficient ρ .  We can use again the estimated 

slope coefficient of our residual regression above, i.e.  ( ) 1ρ̂ −′ ′= t-1 t-1 t-1 te e e e , where as before the first 
element of te  is dropped to assure compatibility of dimension with the lagged residual vector.  This 
allows for the computation of the estimated correlation matrix R̂  
 
Step 2: Derive the FGLS estimator.  Here it is important to note that this can be done without knowing 

2
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Step 3: Derive an estimate of 2
εσ  using 
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Step 4: Derive the variance of the FGLS estimator using 

( ) ( ) 12ˆ ˆˆaV εσ
−

′= -1
FGLSb X R X   (14) 

 
See script mod4s3a for an example. 
 
Additional R example: 
 
Script mod4s3b covers the same steps as mod4s3a for a 96-month time series of average monthly water 
consumption by hotels in the Reno area (data set hotel). 
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