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General Approach

The main difference between matching and regression adjustment is that in matching only the
missing counterfactuals are estimated (“imputed”). The actually observed outcomes are used di-
rectly. The second big difference is that the imputed counterfactuals are based on just a handful of
“close matches”, and not the entire sub-sample of observations from the opposite treatment group.

In other words, if we have y1i, the outcome for a treated observation, we only need to estimate
y0i, the unobserved counterfactual, and vice versa.

Finding nearest neighbors. How do we select the closest matches, aka “nearest neighbors”
amongst the opposite treatment group? This is generally based on similarity in x. Specifically, let
xi be the regressor vector for some individual i. Now consider xl, which belongs to individual l
from the opposite treatment group. Then a measure of closeness or “distance” can be computed as

di,l =

√
(xi − xl)

′V−1 (xi − xl), (1)

where V is the sample variance-covariance matrix for x (for the full sample), or, alternatively, its
diagonal. In the first case, the distance measure in (1) is referred to as Mahalanobis metric. We
will follow Abadie et al. (2004) and use the diagonal version.

Our goal is now to find M nearest neighbors for observation i, all of which must come from the
opposite treatment group. How many do we need? Abadie and Imbens (2004) suggest a small
number, such as three or four. This is because the quality of the matches (as measured by di,l will
typically deteriorate as M increases. By convention, M is interpreted as the minimum number of
matched observations. If there are ties, the actual set of matched observations might be larger than
M .

For simplicity, let’s refer to i as a treated observation, and l as a control observation, though the
following naturally holds for the reverse case. Let’s refer to the set of M nearest neighbors for i as
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Ji,M . That is, the elements l in Ji,M have a value of di,l that is no larger than the 4th closest dis-
tance from i. Thus, if we let the number of elements in Ji,M be denoted as Li,M , we have Li,M ≥M .

There is another important construct that we need to define upfront. It is the number of times
each l was used as a match for some i, weighted, in each case, by the total number of matches for
i, i.e. Li,M . Denoting this quantity as Kl, we have

Kl =

n1∑
i=1

(
I (l ∈ Ji,M )

Li,M

)
, (2)

where n1 is the sample size for the treated, and I is an indicator function, which takes the value of
1 if the condition it represents holds, and a value of 0 otherwise.

Enforcing exact matches. One of the main advantages of this “nearest neighbors” approach
to matching (as opposed to, for example, matching on propensity scores) is that we can “force”
the elements in Ji,M to match exactly on one or more variables in x. For example, in matching
single family homes, we may force nearest neighbors to have the exact same number of bedrooms
and bathrooms as the target property. In our labor application, we might want to only consider
matches with the exact same level (number of years) of education.

Such restrictions can be easily incorporated in this framework by multiplying the corresponding
diagonal elements in V−1 by a large number, say 1000. See script mod5s3 for an example of this
“distance penalty”.

In a spatial context, this penalty could be used to force all matches to come from the same
geographic area (say an urban neighborhood, school district, or school attendance zone), as im-
plemented in Abbott and Klaiber (forthcoming). This could be used to (indirectly) control for
unobserved neighborhood effects.

Checking for covariate balance (overlap). As discussed in Ho et al. (2007), it is very impor-
tant to check for overlap in covariates (also referred to as “covariate balance”) between the treated
observations and the control observations that were actually chosen as matches. We can use again
normalized distances or some other measure of “distribution similarity” for the explanatory vari-
ables across both groups. If this does not produce satisfactory results, the matching process may
have to be repeated, using different matching criteria (e.g. a different distance metric) and/or a dif-
ferent minimum number of matches per treated observation. Diamond and Sekhon (2013) propose
an adaptive, computer-directed approach to find the matching process that maximizes overlap.

Deriving the estimators. The counterfactual outcome for observation i can than be computed
as the average over all outcomes for the matched controls, i.e.

ŷ0i =
1

Li,M

∑
l∈Ji,M

yl, (3)
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if, as we continue to assume, i is a treated observation. The analogous expression holds if i is a
member of the control group (replacing ŷ0i with ŷ1i). Thus, we can generally write

ŷ0i =

{
y0i if wi = 0

1
Li,M

∑
l∈Ji,M yl if wi = 1

and

ŷ1i =

{
y1i if wi = 1

1
Li,M

∑
l∈Ji,M yl if wi = 0

(4)

The ATE can then be computed as

ˆτate = 1
n

n∑
i=1

(ŷ1i − ŷ0i) (5)

Similarly, the ATT can then be derived as

ˆτatt = 1
n1

n1∑
i=1

(y1i − ŷ0i) (6)

Consistent standard errors for the basic-matching ATE and ATT can be derived using the an-
alytical expressions given in Abadie et al. (2004) and employed in script mod5 s3. They are the
same expressions as for the regression-corrected estimator, which are given below.

Matching with regression correction

As discussed in Abadie and Imbens (2006) and Abadie and Imbens (2011) the generic matching
estimators outlined above exhibit a bias that does not vanish even under large samples due to
(highly likely) inexact matching on continuous covariates. As would be expected, the bias increases
with the number of (imprecisely matched) continuous elements in x.

Abadie and Imbens (2011) propose a bias-corrected version of the nearest-neighbors matching
estimator that is based on a regression adjustment. The correction proceeds in two steps. In step
one, we estimate a linear regression model, using only the observations from the opposite treatment
group that were actually used as matches by the “nearest neighbor” criterion. In addition, we need
to weight each such observation by Kl, i.e. the (weighted) number of times it was used as a match.

Thus, we regress ỹl on X̃l, where, for a single observation,

ỹl =
√
Kl ∗ yl and

x̃l =
√
Kl ∗ xl

(7)
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Let the estimated regression coefficients from this model be denoted as β̂. Consider a specific
observation i. We can generate a regression-based prediction for i as µ̂i = xiβ̂. Similarly, we can
generate regression-based predictions for all matched observations that go with i, i.e the elements
in Ji,M , as µ̂l = xlβ̂.

In step 2, the regression-corrected counterfactuals can be derived as:

ŷ0i =

{
y0i if wi = 0

1
Li,M

∑
l∈Ji,M (yl + µ̂i − µ̂l) if wi = 1

and

ŷ1i =

{
y1i if wi = 1

1
Li,M

∑
l∈Ji,M (yl + µ̂i − µ̂l) if wi = 0

(8)

These counterfactuals are then used in the expressions for ATE and ATT as given in equations (5)
and (6).

Consistent standard errors

As discussed in Abadie and Imbens (2011), the bootstrapping approach to obtain standard errors
for the matched ATE and ATT estimates is generally inappropriate. Instead, they derive analytical
solutions for the variance (and thus standard errors) for these estimates.

A central component in this derivation is the term σ̂2. For the ATE, it can be written as

σ̂2ate = 1
2n

n∑
i=1

 1
Li,M

∑
l∈Ji,M

{wi (yi − yl − τ̂ate) + (1− wi) (yl − yi − τ̂ate)}2
 (9)

For the ATT, it is given as

σ̂2att = 1
2n1

∑
i:wi=1

 1
Li,M

∑
l∈Ji,M

(yi − yl − τ̂att)2
 (10)

These estimated σ̂2 is then inserted in the general variance formula. For the ATE:

V̂ate = 1
n2

n∑
l=1

[
(1 +Kl)

2 σ̂2ate

]
(11)
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where, as defined in (2), Kl is the (weighted) number of times observation l was used as a match
for the opposite treatment group. For the ATT we have

V̂att = 1
n2
1

n∑
l=1

[
{wl − (1− wl)Kl}2 σ̂2att

]
(12)

Note that as for the ATE, the summation is over all n observations. If an observation l is in the
control group (with wl = 0), its contribution to the variance is weighted by (Kl)

2. If it is in the
treated group, it will not have been used as a match by definition, i.e. Kl = 0, and its contribution
to the overall variance is simply σ̂2att.

The standard errors for either estimator can then be computed as the square root of the esti-
mated variance.1

Script mod5s3 illustrates these variance derivations for the case of the ATT, using the Lalonde
(1986) labor application.
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