
AAEC/ECON 5126 FINAL EXAM: SOLUTIONS

SPRING 2014 / INSTRUCTOR: KLAUS MOELTNER

This exam is open-book, open-notes, but please work strictly on your own. Please make sure your name is on every

sheet you’re handing in. You have 120 minutes to complete this exam. You can collect a maximum of 50 points. Each

question is scored as indicated below. Vectors are given in lower-case boldface. Matrices are written in upper-case

boldface.

Question I (20 points): Measurement error

Consider the following linear regression model for individual i:

yi = β1 + β2x
∗
2i + εi (1)

Assume that the usual properties of the classical linear regression model hold, except x∗2i is measured
with error. Specifically, for a sample of n observations, the relationship between the observed
variable x2 and the true variable x∗2 is given via

x2 = x∗2 + αi, (2)

where α is a constant and i is a vector of 1’s. That is, each observation on x∗2 is measured with the
same constant error, for example due to poor calibration of the measuring instrument.

Part (a) 2 points
For a single observation, write down the model in (8), using the relationship in (2). Let’s call that
the “empirical model” (the one you’d be using for analysis). Show the properties of the resulting
error term (call it ωi), i.e. its expectation and variance (you can assume that εi is homoskedastic
with variance σ2).

Solution:
yi =β1 + β2 (x2i − α) + εi =

β1 + β2x2i + (εi − αβ2) = β1 + β2x2i + ωi
(3)

E (ωi) = −αβ2, V (ωi) = σ2 (4)

Part (b) 3 points
Derive the covariance of x2i and ωi. Is there evidence of omitted variable bias?
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Solution:

cov (x2i, ωi) = cov (x∗2i + α, εi − αβ2) = 0 (5)

since cov (x∗2i, εi) = 0 by the assumptions of the CLRM, and all other terms are fixed constants. So
there is no indication of omitted variable bias.

Part (c) 6 points
Write down the empirical model at the sample level. Using partitioned regression, show that the
OLS estimate of β2 is unbiased.

Solution:
See Q.3 of PS 2. This is again a situation where the error term has non-zero mean, but is well-
behaved otherwise. In PS2, the nonzero expectation was µ, here it is −αβ2.

Part (d) 6 points
Now consider the same empirical model, but without an intercept. Show that in this case the
estimate of β2 is no longer unbiased.

Solution:
See Q.3 of PS 2.

Part (e) 3 points
Using intuition (no math needed), would the estimate for β2 be unbiased in absence of measurement
error for the model without intercept? Why or why not?

Solution:
No - as long as the true model has an intercept, an empirical model that ignores the constant term
will produce biased estimates for slope coefficients - as we have seen in the last part of PS2, Q.3.

Question II (30 points): Instrumental Variables / TSLS

Consider the following system of equations:

y1 = X1β1 + β2y2 + ε1 (6)

y2 = X2π + ε2 (7)

where all matrices and vectors are of length n, and the column dimensions of X1 and X2 are k1
and k2, respectively, with k2 > k1. Your main goal is to consistently estimate β =

[
β′1 β2

]′
, but

you are concerned that the two error terms are correlated, making y2 an endogenous regressor in
the first equation.

Your strategy is to use the OLS fitted values from the second equation (call them ŷ2) as instrument
for y2 in a Two-Stage least Squares (TSLS) estimation of the first equation.

Throughout you can assume that X1 is orthogonal to X2 and y2 (i.e. X′1X2 = 0, X′1y2 = 0), and
that neither X matrix is correlated with any of the error terms (i.e E (X′rεs) = 0, r = 1, 2, s = 1, 2).
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Part (a) 5 points
Denote the residuals from the OLS estimation of the second equation as e2. Show that they are
orthogonal to X1. Show that the fitted values ŷ2 are also orthogonal to X1

Solution:

X′1e2 =X′1

(
I −X2

(
X′2X2

)−1
X′2

)
y2 =

X′1y2 −X′1X2

(
X′2X2

)−1
X′2y2 = 0

due to the orthogonality assumptions above. Similarly:

X′1ŷ2 =X′1X2

(
X′2X2

)−1
X′2y2 = 0

since X′1X2 = 0 by assumption

Part (b) 5 points
Show that ŷ′2ŷ2 = y′2ŷ2 = ŷ′2y2. (This will be needed later).

Solution:

ŷ′2ŷ2 =y′2X2

(
X′2X2

)−1
X′2X2

(
X′2X2

)−1
X′2y2 =

y′2X2

(
X′2X2

)−1
X′2y2 = y′2ŷ2 = ŷ′2y2

Another correct (and faster) approach uses the projection matrix P2 = X2 (X′2X2)
−1X′2 and its

idempotency and symmetry property: P′2P2 = P2 = P′2.

Part (c) 5 points
Let X =

[
X1 y2

]
and Z =

[
X1 ŷ2

]
.

Describe (in words or math) the regression model for the first stage of the TSLS procedure. Let X̂

be the fitted matrix from this model, and show that X̂ =
[
X1 ŷ2

]
= Z.

Solution:
Regress X on Z, using OLS. Then:

X̂ = PZX = Z
(
Z′Z

)−1
Z′X =[

X1 ŷ2

]
×
[
(X′1X1)

−1 0

0 (ŷ′2 ŷ2)
−1

]
×
[
X′1X1 0

0 ŷ′2y2

]
=

[
X1 ŷ2

]
×
[
(X′1X1)

−1X′1X1 0

0 (ŷ′2ŷ2)
−1 ŷ′2y2

]
=[

X1 (X′1X1)
−1X′1X1 ŷ2 (ŷ′2ŷ2)

−1 ŷ′2ŷ2

]
=[

X1 ŷ2

]
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A clever and faster approach is to note that X̂ = Z (Z′Z)−1 Z′X, and then show that Z′X = Z′Z:

Z′X =

[
X′1X1 0

0 ŷ′2y2

]
Z′Z =

[
X′1X1 0

0 ŷ′2ŷ2

]

The two are equal since ŷ′2y2 = ŷ′2ŷ2. Then: X̂ = Z (Z′Z)−1 Z′X = Z (Z′Z)−1 Z′Z = Z.

Part (d) 5 points

Describe, in words, the second stage of the TSLS procedure and solve for β̂TSLS in terms of X1,ŷ2,
and y1.

Solution:
Regress y1 on X̂, that is on X1 and ŷ2.

β̂TSLS =
(
X̂′X̂

)−1
X̂′y1 =[

(X′1X1)
−1 0

0 (ŷ′2ŷ2)
−1

]
×
[
X′1y1

ŷ′2y1

]
=[

(X′1X1)
−1X′1y1

(ŷ′2ŷ2)
−1 ŷ′2y1

]

Part (e) 10 points
Show that this TSLS approach for the estimation of β is equivalent to adding the second-equation
residuals e2 to equation (3) as an additional regressor and using OLS, i.e. by estimating

y1 = X1β1 + β2y2 + γe2 + ν1 = Xβ + γe2 + ν1 (8)

where X and β are defined as above.

Call this estimator b̃.
(Hint: Use partitioned regression results. Start directly with the partitioned regression solution for

b̃, which will include a residual-maker matrix. Call that matrix Me. Note that Mey2 = ŷ2.)

Solution:

b̃ =
(
X′MeX

)−1
X′Mey1, where

Me = I− e2
(
e′2e2

)−1
e′2

4



Now:

MeX = Me

[
X1 y2

]
=[

X1 − e2 (e′2e2)
−1 e′2X1 y2 − e2 (e′2e2)

−1 e′2y2

]
=[

X1 ŷ2

]
using y2 = ŷ2 + e2

Then:

(
X′MeX

)−1
=

[
X′1X1 X′1ŷ2

y′2X1 y′2ŷ2

]−1
=[

(X′1X1)
−1 0

0 (ŷ′2ŷ2)
−1

]

and

b̃ =

[
(X′1X1)

−1 0

0 (ŷ′2ŷ2)
−1

]
×
[
X′1y1

ŷ2
′y1

]

which yields the same solution as before.
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