
AAEC/ECON 5126 FINAL EXAM: SOLUTIONS

SPRING 2016 / INSTRUCTOR: KLAUS MOELTNER

This exam is open-book, open-notes, but please work strictly on your own. Please make sure your name is on every

sheet you’re handing in. You have 120 minutes to complete this exam. You can collect a maximum of 50 points. Each

question is scored as indicated below. Vectors are given in lower-case boldface. Matrices are written in upper-case

boldface.

Question I (20 points): De-meaned regression

Consider the CLRM: y = iβ0 + Xβ + ε, ε ∼ n
(
0, σ2I

)
(1)

Part (a) 3 points

Write down the solution for OLS estimator for β (call it b) in partitioned regression form.
(You do NOT need to derive the solution mathematically, just show it)

Solution:

b =
(
X′M0X

)−1
X′M0y, where

M0 = I− i
(
i′i
)−1

i′
(2)

Part (b) 5 points

Now consider a version of the model in (1) without an intercept, and with a de-meaned X matrix,
that is an X matrix with the mean of each column subtracted from each observation in that column,
for all columns in X. Call the de-meaned matrix X̃. Your model is now:

y = X̃β + ε, ε ∼ n
(
0, σ2I

)
(3)

Show the solution for the OLS estimator for this model (call it b̃) - how does it compare to the
solution in part (a)?

Solution:
Note that de-meaning X amounts to pre-multiplying X by M0, i.e. X̃ = M0X - recognizing this
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is key for this entire question. Then:

b̃ =
(
X̃′X̃

)−1
X̃′y =(

X′M0X
)−1

X′M0y = b
(4)

Part (c) 5 points

Now consider a version of the model in (1) without an intercept, and with both a de-meaned X

matrix and y vector. Call the de-meaned X matrix X̃, and the de-meaned y vector ỹ. Your model
is now:

ỹ = X̃β + ε, ε ∼ n
(
0, σ2I

)
(5)

Show the solution for the OLS estimator for this model (call it b̂) - how does it compare to the
solutions in parts (a) and (b)?

Solution:

b̂ =
(
X̃′X̃

)−1
X̃′ỹ =(

X′M0X
)−1

X′M0M0y = b̃ = b since

M′
0 = M0, and M0M0 = M0

(6)

Part (d) 7 points

Now consider a linear regression model without a constant term, a de-meaned X, and a non-zero
mean error term, i.e.:

y = X̃γ + ε, ε ∼ n
(
iµ, σ2I

)
(7)

Show that the OLS estimator for γ (call it g) is unbiased.
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Solution:
E (g|X) =

E

((
X̃′X̃

)−1
X̃′y

)
=

E
((

X′M0X
)−1

X′M0y
)

=

E
((

X′M0X
)−1

X′M0M0Xγ
)

+

E
((

X′M0X
)−1

X′M0ε
)

=

γ +
(
X′M0X

)−1
X′M0iµ = γ

(8)

since M0iµ = 0.
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Question I (10 points): Heteroskedasticity

Consider a linear regression model with dependent variable y, data matrix X (including a column
of ones), coefficient vector β, and error vector ε. The sample size is n. Assume the model satisfies
all CLRM assumptions, except for homoskedasticity. Specifically, a fraction of observations αn
with 0 < α < 1 is associated with error terms that have variance σ21, while the remaining (1− α)n
observations have error variance σ22. For convenience, assume your sample is sorted starting with
the σ21 cases, followed by the σ22 cases.

Part (a) 2 points
Show the explicit contents of the n-by-n variance-covariance matrix Ω of the sorted error vector in
terms of σ21, σ22, and identity and zero matrices of appropriate dimensions.

Solution:

Ω =

[
σ21Iαn 0αn x (1−α)n

0(1−α)n x αn σ22I(1−α)n

]
(9)

Part (b) 4 points
Show the form of the OLS estimator and derive its variance (call it V (b)). In light of your finding,
discuss the implications of ignoring the heteroskedasticity problem and using the conventional
expression for V (b) to derive standard errors and t-values.

Solution:

b =
(
X′X

)−1
X′y

V (b) = E
((

X′X
)−1

X′εε′X
(
X′X

)−1)
=
(
X′X

)−1
X′Ωε′X

(
X′X

)−1 (10)

The naive variance estimator s2 (X′X)−1 will be misleading for two reasons: (1) it has the wrong
structural form, and (2) s2 will be a biased estimator for σ2j , j = 1, 2.

Part (c) 4 points
Now assume that there is strong indication that the group-wise heteroskedasticity is driven by an
observed indicator variable D, which takes the value of “0” for all σ21 cases, and “1” for all σ22 cases.
Outline (in words) how you would derive a feasible GLS estimator (call it bFGLS) for this case.
Make sure to show the explicit skedastic function you would use.

Solution:
Skedastic function: σ2i = exp (γ0 + γ1Di).

(1) Run OLS and capture the residuals.
(2) Regress the log of squared residuals against a column of ones and D.
(3) Using the estimates for γ0 and γ1 generate predicted values for σ2j , j = 1, 2.
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(4) Insert these predicted values into Ω and use this estimator of Ω in the GLS formula.

Alternative answer:

(1) Run OLS and capture the residuals.

(2) Compute σ̂2j =
e′jej
nj
, j = 1, 2.

(3) Insert these predicted values into Ω and use this estimator of Ω in the GLS formula.
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Question III (20 points): Serial correlation

Consider the regression-on-intercept model

yi = µ+ εi (11)

where the error term εi has mean zero, constant variance σ2 and equal correlation ρ with all other
errors, with |ρ| < 1.

Part (a) 4 points
Derive the covariance between any two errors and show explicitly the full variance-covariance ma-
trix Ω.

Solution:

corr (εi, εj) = ρ =
cov (εi, εj)

σ2
→

cov (εi, εj) = ρσ2

Ω = σ2


1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1


(12)

Part (b) 10 points
Derive the OLS estimator b and its variance. Prove that b is not a consistent estimator for µ by
showing that the limit of its variance is not zero, as would be required for consistency.
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Solution:

b =
(
i′i
)−1

i′y

V (b) =
(
i′i
)−1

i′Ωi
(
i′i
)−1

=

σ2

n2
[
1 1 . . . 1

]


1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1




1
1
...
1

 =

σ2

n2
=
[
1 + (n− 1) ρ 1 + (n− 1) ρ . . . 1 + (n− 1) ρ

]


1
1
...
1

 =

σ2

n2
(n (1 + (n− 1) ρ)) =

σ2

n
+ σ2ρ− σ2ρ

n

lim
n→∞

(V (b)) = lim
n→∞

(
σ2

n

)
+ lim
n→∞

(
σ2ρ
)
− lim
n→∞

(
σ2ρ

n

)
= σ2ρ 6= 0

(13)

Part (c) 6 points
Reconsider the original model, but now define Ω as a diagonal matrix with heteroskedastic vari-
ances, i.e. V (εi) = σ2i , with σ2i < n,∀i. Using the same approach as in part (b), show that for this
model the OLS estimator is consistent.

Solution:

V (b) = 1
n2 i′Ωi =

1
n2

[
1 1 . . . 1

]

σ21 0 . . . 0
0 σ22 . . . 0
...

...
. . .

...
0 0 . . . σ2n




1
1
...
1

 =

1
n2

n∑
i=1

σ2i

lim
n→∞

(V (b)) = lim
n→∞

(
1
n2

n∑
i=1

σ2i

)
= 0

(14)
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