AAEC/ECON 5126 FINAL EXAM: SOLUTIONS

SPRING 2016 / INSTRUCTOR: KLAUS MOELTNER

This exam is open-book, open-notes, but please work strictly on your own. Please make sure your name is on every sheet you're handing in. You have 120 minutes to complete this exam. You can collect a maximum of 50 points. Each question is scored as indicated below. Vectors are given in lower-case boldface. Matrices are written in upper-case boldface.

QUESTION I (20 POINTS): DE-MEANED REGRESSION

Consider the CLRM:

$$\mathbf{y} = \mathbf{i}\beta_0 + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim n\left(\mathbf{0}, \sigma^2 \mathbf{I}\right)$$
(1)

Part (a) 3 points

Write down the solution for OLS estimator for β (call it **b**) in partitioned regression form. (You do NOT need to derive the solution mathematically, just show it)

Solution:

$$\mathbf{b} = \left(\mathbf{X}'\mathbf{M}_{0}\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{M}_{0}\mathbf{y}, \text{ where}$$

$$\mathbf{M}_{0} = \mathbf{I} - \mathbf{i}\left(\mathbf{i}'\mathbf{i}\right)^{-1}\mathbf{i}'$$
(2)

Part (b) 5 points

Now consider a version of the model in (1) without an intercept, and with a de-meaned \mathbf{X} matrix, that is an \mathbf{X} matrix with the mean of each column subtracted from each observation in that column, for all columns in \mathbf{X} . Call the de-meaned matrix $\tilde{\mathbf{X}}$. Your model is now:

$$\mathbf{y} = \tilde{\mathbf{X}}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim n\left(\mathbf{0}, \sigma^2 \mathbf{I}\right)$$
(3)

Show the solution for the OLS estimator for this model (call it $\tilde{\mathbf{b}}$) - how does it compare to the solution in part (a)?

Solution:

Note that de-meaning X amounts to pre-multiplying X by \mathbf{M}_0 , i.e. $\tilde{\mathbf{X}} = \mathbf{M}_0 \mathbf{X}$ - recognizing this

Date: May 7, 2016.

is key for this entire question. Then:

$$\tilde{\mathbf{b}} = \left(\tilde{\mathbf{X}}'\tilde{\mathbf{X}}\right)^{-1}\tilde{\mathbf{X}}'\mathbf{y} =$$

$$\left(\mathbf{X}'\mathbf{M}_{0}\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{M}_{0}\mathbf{y} = \mathbf{b}$$
(4)

Part (c) 5 points

Now consider a version of the model in (1) without an intercept, and with both a de-meaned \mathbf{X} matrix and \mathbf{y} vector. Call the de-meaned \mathbf{X} matrix $\tilde{\mathbf{X}}$, and the de-meaned \mathbf{y} vector $\tilde{\mathbf{y}}$. Your model is now:

$$\tilde{\mathbf{y}} = \tilde{\mathbf{X}}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim n\left(\mathbf{0}, \sigma^2 \mathbf{I}\right)$$
(5)

Show the solution for the OLS estimator for this model (call it $\hat{\mathbf{b}}$) - how does it compare to the solutions in parts (a) and (b)?

Solution:

$$\hat{\mathbf{b}} = \left(\tilde{\mathbf{X}}'\tilde{\mathbf{X}}\right)^{-1}\tilde{\mathbf{X}}'\tilde{\mathbf{y}} = \left(\mathbf{X}'\mathbf{M}_{0}\mathbf{X}\right)^{-1}\mathbf{X}'\mathbf{M}_{0}\mathbf{M}_{0}\mathbf{y} = \tilde{\mathbf{b}} = \mathbf{b} \text{ since} \mathbf{M}_{0}' = \mathbf{M}_{0}, \text{ and } \mathbf{M}_{0}\mathbf{M}_{0} = \mathbf{M}_{0}$$

$$(6)$$

Part (d) 7 points

Now consider a linear regression model without a constant term, a de-meaned \mathbf{X} , and a non-zero mean error term, i.e.:

$$\mathbf{y} = \tilde{\mathbf{X}} \boldsymbol{\gamma} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim n \left(\mathbf{i} \boldsymbol{\mu}, \sigma^2 \mathbf{I} \right)$$
(7)

Show that the OLS estimator for γ (call it **g**) is unbiased.

Solution:

$$E (\mathbf{g} | \mathbf{X}) =$$

$$E \left(\left(\tilde{\mathbf{X}}' \tilde{\mathbf{X}} \right)^{-1} \tilde{\mathbf{X}}' \mathbf{y} \right) =$$

$$E \left(\left(\mathbf{X}' \mathbf{M}_0 \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{M}_0 \mathbf{y} \right) =$$

$$E \left(\left(\mathbf{X}' \mathbf{M}_0 \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{M}_0 \mathbf{M}_0 \mathbf{X} \boldsymbol{\gamma} \right) +$$

$$E \left(\left(\mathbf{X}' \mathbf{M}_0 \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{M}_0 \boldsymbol{\epsilon} \right) =$$

$$\boldsymbol{\gamma} + \left(\mathbf{X}' \mathbf{M}_0 \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{M}_0 \mathbf{i} \boldsymbol{\mu} = \boldsymbol{\gamma}$$
(8)

since $\mathbf{M}_0 \mathbf{i} \mu = \mathbf{0}$.

QUESTION I (10 POINTS): HETEROSKEDASTICITY

Consider a linear regression model with dependent variable \mathbf{y} , data matrix \mathbf{X} (including a column of ones), coefficient vector $\boldsymbol{\beta}$, and error vector $\boldsymbol{\epsilon}$. The sample size is n. Assume the model satisfies all CLRM assumptions, except for homoskedasticity. Specifically, a fraction of observations αn with $0 < \alpha < 1$ is associated with error terms that have variance σ_1^2 , while the remaining $(1 - \alpha) n$ observations have error variance σ_2^2 . For convenience, assume your sample is sorted starting with the σ_1^2 cases, followed by the σ_2^2 cases.

Part (a) 2 points

Show the explicit contents of the *n*-by-*n* variance-covariance matrix Ω of the sorted error vector in terms of σ_1^2 , σ_2^2 , and identity and zero matrices of appropriate dimensions.

Solution:

$$\mathbf{\Omega} = \begin{bmatrix} \sigma_1^2 \mathbf{I}_{\alpha n} & \mathbf{0}_{\alpha n \, x \, (1-\alpha)n} \\ \mathbf{0}_{(1-\alpha)n \, x \, \alpha n} & \sigma_2^2 \mathbf{I}_{(1-\alpha)n} \end{bmatrix}$$
(9)

Part (b) 4 points

Show the form of the OLS estimator and *derive* its variance (call it $V(\mathbf{b})$). In light of your finding, discuss the implications of ignoring the heteroskedasticity problem and using the conventional expression for $V(\mathbf{b})$ to derive standard errors and t-values.

Solution:

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{y}$$

$$V(\mathbf{b}) = E\left((\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\epsilon\epsilon'\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}\right) = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\Omega\epsilon'\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$
(10)

The naive variance estimator $s^2 (\mathbf{X}'\mathbf{X})^{-1}$ will be misleading for two reasons: (1) it has the wrong structural form, and (2) s^2 will be a biased estimator for σ_j^2 , j = 1, 2.

Part (c) 4 points

Now assume that there is strong indication that the group-wise heteroskedasticity is driven by an observed indicator variable **D**, which takes the value of "0" for all σ_1^2 cases, and "1" for all σ_2^2 cases. Outline (in words) how you would derive a feasible GLS estimator (call it \mathbf{b}_{FGLS}) for this case. Make sure to show the explicit skedastic function you would use.

Solution: Skedastic function: $\sigma_i^2 = exp(\gamma_0 + \gamma_1 D_i).$

- (1) Run OLS and capture the residuals.
- (2) Regress the log of squared residuals against a column of ones and **D**.
- (3) Using the estimates for γ_0 and γ_1 generate predicted values for $\sigma_j^2, j = 1, 2$.

(4) Insert these predicted values into Ω and use this estimator of Ω in the GLS formula.

Alternative answer:

- Run OLS and capture the residuals.
 Compute σ_j² = e'_je_j/n_j, j = 1, 2.
 Insert these predicted values into Ω and use this estimator of Ω in the GLS formula.

Consider the regression-on-intercept model

$$y_i = \mu + \epsilon_i \tag{11}$$

where the error term ϵ_i has mean zero, constant variance σ^2 and equal correlation ρ with all other errors, with $|\rho| < 1$.

Part (a) 4 points

Derive the covariance between any two errors and show explicitly the full variance-covariance matrix Ω .

Solution:

$$\operatorname{corr} (\epsilon_i, \epsilon_j) = \rho = \frac{\operatorname{cov} (\epsilon_i, \epsilon_j)}{\sigma^2} \rightarrow$$

$$\operatorname{cov} (\epsilon_i, \epsilon_j) = \rho \sigma^2$$

$$\Omega = \sigma^2 \begin{bmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \dots & 1 \end{bmatrix}$$
(12)

Part (b) 10 points

Derive the OLS estimator b and its variance. Prove that b is not a consistent estimator for μ by showing that the limit of its variance is not zero, as would be required for consistency.

Solution:

$$b = (\mathbf{i'}\mathbf{i})^{-1}\mathbf{i'}\mathbf{y}$$

$$V(b) = (\mathbf{i'}\mathbf{i})^{-1}\mathbf{i'}\Omega\mathbf{i} (\mathbf{i'}\mathbf{i})^{-1} =$$

$$\frac{\sigma^2}{n^2} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \dots & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} =$$

$$\frac{\sigma^2}{n^2} = \begin{bmatrix} 1 + (n-1)\rho & 1 + (n-1)\rho & \dots & 1 + (n-1)\rho \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} =$$

$$\frac{\sigma^2}{n^2} (n(1 + (n-1)\rho)) = \frac{\sigma^2}{n} + \sigma^2 \rho - \frac{\sigma^2 \rho}{n}$$

$$\lim_{n \to \infty} (V(b)) = \lim_{n \to \infty} \left(\frac{\sigma^2}{n} \right) + \lim_{n \to \infty} (\sigma^2 \rho) - \lim_{n \to \infty} \left(\frac{\sigma^2 \rho}{n} \right) = \sigma^2 \rho \neq 0$$
(13)

Part (c) 6 points

Reconsider the original model, but now define Ω as a diagonal matrix with heteroskedastic variances, i.e. $V(\epsilon_i) = \sigma_i^2$, with $\sigma_i^2 < n, \forall i$. Using the same approach as in part (b), show that for this model the OLS estimator is consistent.

Solution:

$$V(b) = \frac{1}{n^2} \mathbf{i}' \mathbf{\Omega} \mathbf{i} = \frac{1}{n^2} \mathbf{i}' \mathbf{\Omega} \mathbf{i} = \frac{1}{n^2} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n^2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2$$

$$\lim_{n \to \infty} (V(b)) = \lim_{n \to \infty} \left(\frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 \right) = 0$$
(14)