
AAEC/ECON 5126 final exam

Spring 2018 / Instructor: Klaus Moeltner

May 8, 2018

This exam is open-book, open-notes, but please work strictly on your own. Please make sure your name is on every

sheet you’re handing in. You have 120 minutes to complete this exam. You can collect a maximum of 50 points. Each

question is scored as indicated below. Vectors are given in lower-case boldface. Matrices are written in upper-case

boldface.

Question I (12 points):

Consider a city located downstream of a river dam. To facilitate spawning runs of salmon, the
government decides to remove the dam. This will place a large fraction of residential properties
in the city in a “Special Flood Hazard Area” (SFHA) with a higher risk of flooding during storm
events. You are interested in estimating the loss in property values from being located in a SFHA.
You collect data on the sale price of each home i, yi, as well as many structural and neighborhood
characteristics xi. Your plan is to run the following CLRM:

yi = α+ x′iβ + γdi + εi, (1)

where di is a binary indicator that takes the value of 1 if a residence is located in a SFHA, and a
value of zero otherwise.

Part (a), 3 points

(a) Write the model at the sample level, using notation y, X, d, and ε.

(b) Assume the functional form of the regression equation is correct. Under which conditions,
involving X, ε, and d will the OLS solution γ̂ be an unbiased estimate of the true SFHA effect?

(c) Now assume you have an omitted variable problem, that is a correlation of ε with one or more
elements of X. Under which condition will remain γ̂ be an unbiased estimate of the true SFHA
effect? How would pre-matching the sample before running this regression help in this case?
Explain in detail.

Solution:

(a) y = αi + Xβ + γd + ε,

(b) BOTH X and d are uncorrelated with ε OR only X is correlated with ε and X and d are
uncorrelated with each other.
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(c) X and d are uncorrelated with each other. Pre-matching can help in that it picks a sample
of control homes that has a very similar distribution for all variables in X compared to the
treated. This makes the treatment status (virtually) independent of the other control variables
by design. This, in turn, guards against O.V. issues such as those described in the question.

Part (b) 9 points
Now assume that xi includes all relevant control variables, such that there are no O.V. problems.
In words, and using as much detail as necessary, describe how you would estimate the true SFHA
effect using the following alternative methods. For each case, be specific in how you would estimate
the Average Treatment Effect on the Treated (ATT), and its standard error.

(a) A separate regression approach - one regression using only the treated observations, and a
second regression using only controls. When would that be useful or warranted?

(b) A regression model such as (1), but using the propensity score instead of xi. Under which
conditions involving the PS would this produce a consistent estimate of the SFHA effect?

(c) Using a matching estimator with regression correction. You can assume 1 nearest neighbor.
What is the main advantage of this hybrid model over the other approaches?

Solution

(a) Run a separate regression for the treated and control homes. From each regression, generate
predicted outcomes for all observations. Estimate the home-specific treatment effect as the
difference of predicted prices for each pair of predictions. Then average these differences over all
treated homes to obtain an estimate of the ATT. Compute standard errors using the bootstrap
method. This approach is useful if you want to allow for separate sets of coefficients in the
control and treated regression.

(b) Estimate the PS via MLE (e.g. logit model). Then insert the predicted PS into the regression
models for controls and treated instead of the explanatory variables (X). This makes sense if
the estimated propensity score itself is consistent, that is the PS equation is correctly specified
and not plagued by O.V. problems. Standard errors are obtained via bootstrap methods, where
the bootstrap includes both re-running the PS equation and the actual regression.

(c) For each treated, find the closest control home based on a Euclidean distance metric. (Op-
tional response: For optimally balanced matching, this embeds an MLE routine to find the
optimal weights for each variable in the distance metric). Then, using matched controls only,
run a regression of prices on all observables X and generate predictions for both treated and
matched controls. Compute the counterfactual for each treated as (price of matched control
+ predicted price for the treated - predicted price for the control). Compute the difference of
(price of treated - counterfactual) for each treated. Average this difference over all treated.
Compute standard errors using Abadie and Imbens’ (2011) analytical method. (The bootstrap
is inconsistent for this case).
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The main advantage of this approach is its double robustness - the ATT will be unbiased if either
the controls are perfect matches, or the auxiliary regression generates unbiased predictions of
price.
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Question II (18 points):

Consider the Poisson model for a random variate y with parameter λ, given as

p (y|λ) =
λyexp(−λ)

y!
, with

E (y|λ) = V (y|λ) = λ, λ > 0, y ∈ {0, 1, 2, 3, ....}
(2)

Part (a), 4 points
Now consider a sample of n observations from this distribution, with each observation generically
labeled yi, i = 1 . . . n. Write down the joint distribution for the sample data (in un-logged form).
Call it p (y|λ).

Solution:

p (y|λ) =
n∏

i=1

λyiexp(−λ)

yi!
=

(
n∏

i=1

1

yi!

)
λ(

∑n
i=1 yi)exp (−nλ)

Part (b), 8 points
Suppose you stipulate a gamma prior density for λ with shape parameter a and inverse scale
(“rate”) parameter b, given as

p (λ) = g (a, b) =
ba

Γ (a)
λ(a−1)exp (−bλ) , with

E (λ) =
a

b
, V (λ) =

a

b2
, λ, a, b > 0,

(3)

Show that the posterior distribution of λ, given your collected data from the Poisson, is also a
gamma. Show the form of the posterior shape and rate parameters (you can call them a∗ and b∗).

Solution:

p (λ|y) ∝λ(a−1)exp (−bλ)λ(
∑n

i=1 yi)exp (−nλ) =

λ(a+
∑n

i=1 yi−1)exp (− (b+ n)λ)

This describes the kernel of another gamma density with posterior shape a∗ = a +
∑n

i=1 yi and
posterior rate b∗ = b+ n. Therefore, we can deduce that λ|y ∼ g (a+

∑n
i=1 yi, b+ n).

Part (c), 4 points
Show that the posterior expectation can be written as a weighted average of the prior expectation
and the sample mean. What happens to this posterior expectation as n→∞?

Solution:
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E (λ|y) =
a+

∑n
i=1 yi

b+ n
=

(
b

b+ n

)
a

b
+

(
n

b+ n

) ∑n
i=1 yi
n

The limit of the first weight is 0, and that of the second weight is 1, so as the sample size increases
the posterior expectation will converge to the sample mean.

Part (d), 2 points

Suppose you are opening a small restaurant In Blacksburg. Before you start your business, you
expect 20 guests / day with a variance of 10, which can be modeled as a gamma prior with shape
40 and rate 2. After 30 days of running your business, you count a total of 824 guests. You plot
the daily counts, and they look exactly like a Poisson distribution.

How many guest per day would you expect for the following month?

Solution:
Based on the results from the previous section, the posterior expectation for daily visits can be
computed as 40+824

2+30 = 864
32 = 27
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Question 3 (20 points)

Consider a CLRM of the following form, at the observation level (dropping individual-level sub-
scripts for simplicity):

y = β0 + β1x1 + β2x2 + β3x
2
1x

2
2 + ε, where

ε ∼ i.i.d.
(
0, σ2

) (4)

Part (a), 2 points

You are primarily interested in the marginal effect of x1 and x2 on the outcome variable, i.e.
(

∂y
∂x1

)
,

and
(

∂y
∂x2

)
. Show the explicit form of these marginal effects, for a given x1 and x2.

Solution:
∂y

∂x1
= β1 + 2β3x1x

2
2

∂y

∂x2
= β2 + 2β3x2x

2
1

Part (b), 6 points

Let E (x1) = µ1 and E (x2) = µ2 be the population means of the two explanatory variables. Simi-
larly, let σ21 and σ22 be the two variances. Assume all of these moments are known to the analyst.
Also, it is known that x1 and x2 are independently distributed.

Derive the expectation, over x1 and x2, of these marginal effects you obtained in the preceding part
in terms of these moments. Let the solutions be labeled as γ1 and γ2, respectively.

Solution:
Due to independence, we have E

(
xix

2
j

)
= E (xi)E

(
x2j

)
= µi

(
σ2j + µ2j

)
, i, j = 1, 2, thus:

γ1 = E

(
∂y

∂x1

)
= β1 + 2β3µ1

(
σ22 + µ22

)
γ2 = E

(
∂y

∂x1

)
= β2 + 2β3µ2

(
σ21 + µ21

)

Part (c), 4 points
Setting x2 = µ2, at what value of x1 is y maximized?
How do you know it’s a maximum? (Assume β3 < 0)
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Solution: (
∂y

∂x1
|x2 = µ2

)
= 0→

x∗1 = − β1
2β3µ22(

∂y2

∂2x1
|x2 = µ2

)
= 2β3µ

2
2 < 0

Part (d), 4 points
Using the results form part (b), solve for β1 and β2, then insert the resulting expressions into
equation (4) in lieu of β1 and β2.

After some manipulation, this should produce the following “reduced-form” model:

y = β0 + γ1x1 + γ2x2 + β3
(
f
(
x1, x2, µ1, µ2, σ

2
1, σ

2
2

))
+ ε, (5)

where you need to fill in the explicit form of f (.).

Solution:

y = β0 + γ1x1 + γ2x2 + β3
(
x21x

2
2 − 2x1µ1

(
µ22 + σ22

)
− 2x2µ2

(
µ21 + σ21

))
+ ε,

Part (e), 4 points
Now suppose that µ1 = µ2 = 0, and you estimate the model in (4). What is the interpretation of
β1 and β2?

Solution:
In that case, we have β1 = γ1 and β2 = γ2, that is both coefficients can immediately be interpreted
as the population expectation, over x1 and x2, of the marginal effects of these variables on y.
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