
AAEC/ECON 5126 final exam

Spring 2019 / Instructor: Klaus Moeltner

May 11, 2019

This exam is open-book, open-notes, but please work strictly on your own. Please make sure your name is on every

sheet you’re handing in. You have 120 minutes to complete this exam. You can collect a maximum of 50 points. Each

question is scored as indicated below. Vectors are given in lower-case boldface. Matrices are written in upper-case

boldface.

Question I (18 points):

Consider the following linear regression model for observation i:

yi = β0 + β1si + x′iγ + εi with

εi ∼ n
(
0, σ2

)
, ∀i = 1 . . . n,

(1)

where yi is the sales price of a single-family residential home (in dollars), si is square footage, xi
includes a set of additional (exogenous) regressors, and εi is a typical error term with the usual
CLRM properties, as shown in the second line of (1).

Part (a), 8 points

(a) Show E (yi|si,xi), where E (.) is the expectation operator.

(b) What is the interpretation of β1 with respect to yi? Provide mathematical support for your
answer.

(c) If one were to use ln yi, where ln is the natural logarithm, instead of yi in (1), how would that
change the interpretation of β1 with respect to yi? Provide mathematical support for your
answer.

(d) If, in addition, one were to use the log of square footage, ln si instead of si in (1), how would
that change the interpretation of β1 with respect to yi? Provide mathematical support for your
answer.

Solution:

(a) Expected sales price is given as:

E (yi|.) = β0 + β1si + x′iγ
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(b) β1 gives the linear effect of si on price, that is the change in price, in dollars, due to a unit
change in square footage, ceteris paribus. Mathematically:

∂yi
∂si

= β1

(c) We now have:

yi = exp
(
β0 + β1si + x′iγ + εi

)
and

∂yi
∂si

= yi ∗ β1, or

(
∂yi
yi

)
∂si

= β1

Thus, β1 can be interpreted as the proportional change in home price due to a 1-unit change
in square footage, ceteris paribus.

(d) Using logs for both yi and si gives:

yi = exp
(
β0 + β1ln si + x′iγ + εi

)
and

∂yi
∂si

= yi ∗ β1 ∗
1

si
, or

(
∂yi
yi

)
(
∂si
si

) = β1

Thus, β1 can be interpreted as an elasticity, that is the percentage change in price due to a
1-percent change in square footage, ceteris paribus.

Part (b), 6 points
Now consider another model that uses price divided by square footage as the dependent variable,
i.e.:

y∗i =
yi
si

= β0 + β1si + x′iγ + εi with

εi ∼ n
(
0, σ2

)
, ∀i = 1 . . . n,

(2)

(a) What is the new interpretation of β1? Assuming diminishing marginal utility of housing space
holds for the entire range of square footage found in the data, what would you expect its sign
to be?

(b) Compute the direct effect of si on yi for this model. How is it fundamentally different from all
other effects of square footage on price derived in part (a) above?

(c) At what value of si (which may or may not be represented by the data) is this direct effect
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maximized? Under which additional condition is this indeed a maximum, and how does your
answer relate to your argument regarding the expected sign of β1 from above?

Solution:

(a) Now β1 signifies the change in price per square foot due to a 1-unit change in square footage.
Under diminishing utility over space holds, one would expect its sign to be negative.

(b) The direct effect of si on yi can be derived as:

yi = siβ0 + β1s
2
i + six

′
iγ + siεi and

∂yi
∂si

= β0 + 2β1 ∗ si + x′iγ + εi

Thus, the 1-unit effect of si on price now changes over the range of si.

(c) It is maximized at s∗i = −β0+x′
iγ+εi

2β1
. This is indeed a maximum if the second derivative of price

w.r.t. square footage is negative, that is if β1 < 0. This, of course, is expected as discussed
above.

Part (c), 4 points
Somebody suggests using the following mathematically equivalent model to (2) and estimating it
via OLS: yi = siβ0 + β1si

2 + six
′
iγ + siεi (3)

(a) How does this model violate CLRM assumptions?

(b) How could this be addressed econometrically to derive consistent estimates for all parameters?
Show as much mathematical detail as possible.

Solution:

(a) The error variance is now given as V (εi) = si2 ∗ σ2 for each observation. Thus, errors become
heteroskedastic, violating A4 of the CLRM.

(b) This could be fixed by using GLS or, more specifically, weighted LS (WLS) instead of OLS,
with error variance-covariance matrix for the whole sample given as Ω = diag

[
s21 s22 . . . s2n

]
.

Then use βWLS =
(
X′Ω−1X

)−1
X′Ω−1y.
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Question 2 (16 points)

Consider the following true relationship between nitrogen fertilizer (N) and yield (y) for a specific
crop, for plot i:

yi = β0 + β1Ni + εi if Ni < N∗

yi = P + εi otherwise, and

εi ∼ n
(
0, σ2

)
, ∀i = 1 . . . n,

(4)

where P is often referred to as “plateau yield,” and εi is a mean-zero normal error with equal
variance σ2 for all i, as shown in the second line of (1). N∗ is the amount of fertilizer beyond which
yield will simply get “stuck” at the plateau. Throughout this question assume that in an actual
application Ni goes from zero to 200, and that N∗, while unknown, is located somewhere towards
the middle of this range. Also assume no actual Ni exactly equals N∗.

Further assume β0 > 0, β1 > 0.

Part (a), 6 points

(a) Show E (yi|Ni) for both Ni < N∗, and Ni > N∗, respectively.

(b) Graph E (yi|Ni) for the entire range of Ni, with yield on the y-axis, and nitrogen on the x-axis.
Add a few scattered dots around this line to symbolize the actual data points.

Solution:

(a)

E (yi|Ni < N∗) = β0 + β1Ni

E (yi|Ni > N∗) = P

(b) The graph should look something like this (ignore the dashed line for now):
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Figure 1: E(y|N) with data points and incorrect OLS

Part (b), 6 points
Now assume a researcher is unaware of the true relationship between yield and nitrogen, and simply
uses an OLS regression of yi on a constant and Ni, using the entire data, to estimate β0, β1, and
σ2.

(a) Add your best guess for the estimated regression line (= predicted values for yield for the entire
data range) to your graph.

(b) In which directions will the estimates for β0 be biased? How about for β1 and σ2?
(Verbal answer is sufficient)

Solution:

(a) The OLS regression line should look something like the dashed line in the graph above.

(b) The intercept will be biased upwards, the slope will be biased downwards, and the error variance
will be biased upwards.
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Part (c), 4 points
Now assume the researcher knows the general form of the true relationship in (1) as well as N∗.

(a) How could she use the subset of observations with Ni < N∗ and basic OLS to predict plateau
yield P? Show some math.

(b) How would one derive a standard error for this prediction? Show some math. Assume that the

estimated variance-covariance matrix for β̂ =
[
β̂0 β̂1

]′
is given as V̂β.

Solution:

(a) Estimate β0 and β1 via OLS, then use: P̂ = β̂0 + β̂1 ∗N∗.

(b) s.e.
(
P̂
)

=
√

x′V̂βx, where x =
[
1 N∗

]′
.
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Question 3 (16 points)

Consider the CLRM y = Xβ + ε (call it “Model 1”). Let X be partitioned into X1 and X2, which
have dimensions n by k1 and n by k2, respectively. Let k = k1 + k2. Partition β accordingly into β1

and β2.

Assume X1 and X2 are perfectly orthogonal in the sample and in the population. Furthermore,
neither of them are correlated with the regression error, by the usual CLRM assumption.

Part (a), 6 points

(a) Using partitioned regression results, derive separate estimators for β1 and β2 (call them β̂1

and β̂2).

(b) For the full model, express the residual vector e as a function of y and the projection matrices

P1 and P2, where Pj = Xj

(
X′jXj

)−1
X′j j = 1, 2.

(c) Show that (P1 + P2) is idempotent under the model assumptions.

(d) Express the sum of squared residuals (SSR) as a function of y and the projection matrices P1

and P2. Call it SSR1.

Solution:

β̂1 =
(
X′1M2X1

)−1
X′1M2y =

(
X′1X1

)−1
X′1y, since

X′1M2 = X′1

(
I−X2

(
X′2X2

)−1
X′2

)
=

X′1 −X′1X2

(
X′2X2

)−1
X′2 = X′1 − 0 = X′1

(analogous for β̂2)

e = y −X1β̂1 −X2β̂2 = y −P1y −P2y

(P1 + P2) ∗ (P1 + P2) = P1P1 + 2P1P2 + P2P2 = P1 + P2, since

P1P2 = X1

(
X′1X1

)−1
X′1X2

(
X′2X2

)−1
X2 = 0 by orthogonality

SSR1 = e′e = (y − (P1 + P2) y)′ (y − (P1 + P2) y) =

y′y − 2y′ (P1 + P2) y + y′ (P1 + P2) y =

y′y − y′P1y − y′P2y

Part (b), 6 points
Now consider a second CLRM model (“Model 2”) that regresses y only on X1, i.e. y = X1γ + ν.

(a) Write down the OLS solution for γ̂ and compare it to your estimator for β1 from part (a).
Comment.
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(b) For Model 2, express the residual vector e, as well as the sum of squared residuals (SSR), as a
function of y and the projection matrix P1. Call this sum SSR2.

(c) Show the expression for the difference of the two SSRs, and argue that the SSR from Model
1 can be no larger than the SSR from Model 2. (Hint: Recall that projection matrices are
semipositive definite).

Solution:

γ̂ =
(
X′1X

)−1
X′1y = β̂1

e = y −X1γ̂ = y −P1y

SSR2 = e′e = y′y − y′P1y

SSR2 − SSR1 = y′P2y

This is a quadratic form that will be ≥ 0, since P2 is semi-positive definite. So the model with less
information produces an SSR that is at least as large as the SSR for the more complete model.

Part (c), 4 points
What does this imply for the estimate of the (conditional) variance of β̂1 compared to the (condi-
tional) variance of γ̂ for both a finite sample of size n, and when n→∞?
(Hint: Take a close look at the expression for the estimated error variance, s2, for each model.)

Solution:

V̂
(
β̂1

)
= s21

(
X′1X1

)−1
, s21 =

SSR1

n− k

V̂ (γ̂) = s22
(
X′1X1

)−1
, s22 =

SSR2

n− k1

While SSR2 ≥ SSR1, we have k > k1, so the denominator of s21 is smaller than the denominator

of s22. Thus, for a finite sample, the overall comparative magnitude of V̂
(
β̂1

)
versus V̂ (γ̂) is

indeterminate. However, as n grows large the “denominator effect” vanishes, and, unambiguously,

V̂
(
β̂1

)
≤ V̂ (γ̂). (Or, more technically correct, the difference between V̂

(
β̂1

)
and V̂ (γ̂) becomes

negative-semidefinite.)

Note: In retrospect, only the “finite n” part of this question really makes sense, since the ordinary
limit of both variances goes to zero, as some of you pointed out (a gave full credit for that response),
and the plims go to σ2ε plim (X′1X1)

−1 and σ2νplim (X′1X1)
−1, respectively. Since no information on

the relative magnitude of σ2ε and σ2ν is given, we can’t make a clear statement on relative magnitude
using plims.
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