AAEC/ECON 5126 final exam

Spring 2020 / Instructor: Klaus Moeltner

May 12, 2020

This exam is open-book, open-notes, but please work strictly on your own. Please submit the exam electronically via Canvas (or e-mail) as a single pdf. You can collect a maximum of 50 points. Each question is scored as indicated below. Vectors are given in lower-case boldface. Matrices are written in upper-case boldface.

Question I (10 points):

Consider the linear regression model, expressed for a single observation i:

$$y_i = \beta_1 + \beta_2 x_{2i}^* + \epsilon_i, \tag{1}$$

where ϵ_i has the usual CLRM properties.

Assume, however, that x_{2i}^* is measured with *proportional error* for the entire sample, with the relationship between the observed x_{2i} and the true x_{2i}^* given as:

$$x_{2i} = x_{2i}^* (1+\alpha), \quad \text{with} \quad 0 < \alpha < 1$$
 (2)

Part (a), 4 points

Express the model in (1) in terms of x_{2i} for a single observation and for the full sample. For the full model show that the measurement error can be interpreted as introducing omitted variable bias in a regression that uses \mathbf{x}_2 instead of \mathbf{x}_2^* .

Part (b), 4 points

Using partitioned regression, show that the estimated coefficient on \mathbf{x}_2 (call it b_2) is biased compared to the true β_2 .

Part (c), 2 points

How could this problem be fixed if α were known?

Question 2 (20 points)

Consider the following true population model for a given individual i:

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i \quad \text{with} \\ \epsilon_i \sim n \left(0, \sigma^2 \right),$$
(3)

where y_i is some continuous outcome of interest, T_i is a binary (0/1) treatment indicator, x_i is a continuous explanatory variable, and ϵ_i is a standard error term with the usual CLRM properties.

Part (a), 4 points

a What is the true treatment effect?

b Show that it can be expressed as a difference between two expectations (conditional on x_i).

Part (b), 6 points

Assume you collect a random sample of individuals from this population. In your sample, you have n_1 treated and n_0 un-treated ("control") observations. For ease of notation, let outcome and explanatory variable for a treated observation be denoted as y_{Ti} and x_{Ti} , respectively. Analogously, let y_{Ci} and x_{Ci} be outcome and explanatory variable for a given control observation.

Assume you use some matching procedure to pair each treated observation with a single control observation. You then consider the following estimator for the population treatment effect (="average treatment effect for the treated"):

$$ATT_G |\mathbf{x}| = \frac{1}{n_1} \sum_{i=1}^{n_1} (y_{Ti} - y_{Ci}),$$

where subscript "G" stands for "generic," \mathbf{x} collects all relevant x_i 's, and the summation is over all treated observations.

- a Assume that the average difference between x_{Ti} and x_{Ci} across all matched pairs equals $\delta \neq 0$. Show that, under this assumption, this generic ATT (given **x**) is biased.
- b Under what conditions would this bias go to zero? Provide some verbal intuition.

Part (c), 10 points

Now consider applying the linear regression model given in (3) to the matched control observations,

that is:

$$y_{Ci} = \beta_0 + \beta_2 x_{Ci} + \epsilon_i \quad \text{with} \\ \epsilon_i \sim n \left(0, \sigma^2\right), \tag{4}$$

- a Assume this model produces unbiased estimates for β_0 and β_2 (after all, you used the correct functional specification, and the correct error assumptions...). Call the coefficient estimates $\hat{\beta}_0$ and $\hat{\beta}_2$, respectively. Consider the linear predictions flowing from this model plugging in either some x_{Ci} or some x_{Ti} . Call these predictions \hat{y}_{Ci} and \hat{y}_{Ti} , respectively. Show that they are also unbiased for the corresponding $E(y_i|x_{Ti})$ and $E(y_i|x_{Ci})$, respectively.
- b Now consider the regression-adjusted treatment effect estimator ATT_R , given as:

$$ATT_R | \mathbf{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} \left((y_{Ti} - y_{Ci}) - (\hat{y}_{Ti} - \hat{y}_{Ci}) \right),$$

Show that this estimator is unbiased, regardless of the (average) difference between x_{Ti} and x_{Ci} .

c In terms of unbiasedness how does this regression-adjusted matching estimator for the true treatment effect compare to directly estimating β_1 using the regression model in (3) and the entire sample of treated and controls? (A verbal response is sufficient).

Question 3 (20 points)

You are involved in a research project on beach visitation in Florida (FL). Beach visitors can be divided into three groups: (1) Locals (FL residents who live within 60 miles of a given beach), (2) FL tourists (FL residents who live further away than 60 miles from a given beach), and (3) out-of-state tourists. You are interested in the true proportions of these groups for all visitors to *Siesta Key*, a large, popular beach, on a specific day. Let these true proportions be labeled as π_1 , π_2 , and π_3 , for locals, FL tourists, and out-of-state tourists respectively. Naturally, $\sum_{j=1}^{3} \pi_j = 1$, j = 1...3. Also, let $\boldsymbol{\pi} = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \end{bmatrix}'$.

On your day of interest, you randomly sample n visitors to Siesta Key. For each, you write down an indicator vector \mathbf{z}_i that shows to which group the person belongs. For example, if the person is a local, then $\mathbf{z}_i = \begin{bmatrix} z_{1i} & z_{2i} & z_{3i} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$. Similarly, if the person is a FL tourist, the second element in \mathbf{z}_i will be "1" and the other two will be "0," and if the person is an out-of-state tourist, $z_{3i} = 1$, and $z_{1i} = z_{2i} = 0$. Let the total number of individuals sampled for each group be n_1 , n_2 , and n_3 , respectively.

You stipulate that each individual indicator vector \mathbf{z}_i follows a multinomial likelihood, given as:

$$p(\mathbf{z}_{i}|\boldsymbol{\pi}) = \left(\frac{1}{\prod_{j=1}^{3} z_{ji}!}\right) \prod_{j=1}^{3} \pi_{j}^{z_{ji}} = \prod_{j=1}^{3} \pi_{j}^{z_{ji}}$$
(5)

Part (a), 2 points

Write down the likelihood for the entire sample of n observations. You can label the entire set of n indicator vectors as z. Simplify as much as possible.

Part (b), 5 points

As a prior for π you choose a Dirichlet distribution. The density and moments for the Dirichlet are given as:

$$p(\boldsymbol{\pi}) = \left(\frac{\Gamma\left(\tilde{\alpha}\right)}{\prod_{j=1}^{3}\Gamma\left(\alpha_{j}\right)}\right) \prod_{j=1}^{3} \pi_{j}^{\alpha_{j}-1}, \quad \alpha_{j} > 0, \,\forall j,$$
$$E\left(\pi_{j}\right) = \frac{\alpha_{j}}{\tilde{\alpha}}, \quad V\left(\pi_{j}\right) = \frac{\alpha_{j}\left(\tilde{\alpha} - \alpha_{j}\right)}{\tilde{\alpha}^{2}\left(\tilde{\alpha} + 1\right)}, \quad \text{where}$$
$$\tilde{\alpha} = \sum_{j=1}^{3} \alpha_{j} \tag{6}$$

a Derive the kernel of the posterior distribution $p(\boldsymbol{\pi}|\mathbf{y})$, and determine the statistical distribution

for the full posterior.

b Show the posterior parameters for this distribution (label them α_j^* , j = 1...3).

Part (c), 5 points

Assume you have visitor information from *other nearby beaches*, with average proportions for the three visitor groups of 0.5, 0.1, and 0.4. Interpreting these averages as prior expectations, and letting $\alpha_1 = 10$, derive the prior parameters α_2 and α_3 , as well as the prior variances for the three shares. Round the variances to four decimals.

Part (d), 8 points

Assume your Siesta Key sample of 200 visitors produces $n_1 = 80$, $n_2 = 10$, and $n_3 = 110$.

- a Using all the information from above, compute the posterior expectations and variances for the population shares. Round all expectations to three decimals, and all variances to four decimals.
- b How can you tell that the collected data has brought information to the prior?
- c The town of Siesta Key is willing to sponsor an advertising campaign targeted to *in-state tourists* (group 2), if the posterior share of this group falls below 10%. What will be the town's decision?