
AAEC/ECON 5126 MIDTERM EXAM: SOLUTIONS

SPRING 2014 / INSTRUCTOR: KLAUS MOELTNER

This exam is open-book, open-notes, but please work strictly on your own. Please make sure your name is on every

sheet you’re handing in. You have 75 minutes to complete this exam. You can collect a maximum of 30 points. Each

question is scored as indicated below. Vectors are given in lower-case boldface. Matrices are written in upper-case

boldface.

1. Question I (10 points)

Consider the CLRM for a full sample of n observations: y = β0i + β1d + β2x + ε, where all the
usual assumptions hold, i is an n by 1 vector of “1”s, d is an indicator variable that takes the value
of “1” for person i if that person belongs to a specific category (e.g. “female”, or “hispanic”, etc.),
and a value of “0” otherwise, and xi is a continuous explanatory variable. Assume that n1 of the
n individuals belong to the indexed category (with 0 < n1 < n).

(a) (2 pts.) For a single observation, show the form of E (yi|di = 0, xi), and E (yi|di = 1, xi). Is
the marginal effect of xi on E (yi|xi) the same for both groups or not? How about the intercept?

(b) (2 pts.) Let z =
[
i d

]
and βz =

[
β0 β1

]′
. Show the explicit form of z′ε.(Hint: This should

be a 2 by 1 vector with two summation terms. The second summation term has a condition for
the elements over which the summation is taken. You should state this condition underneath
the summation sign.)

(c) (2 pts.) Let b2 be the OLS estimator for β2. Write its solution in partitioned regression form,
and show the explicit form of the residual maker matrix M1 in terms of z.

(d) (4 pts.) Show that b2 is an unbiased estimator for β2 (conditional on x,d).
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Solutions:

(a)

E (yi|di = 0, xi) = β0 + β2 ∗ xi
E (yi|di = 1, xi) = (β0 + β1) + β2 ∗ xi

The slopes (marginal effect of xi) are the same for both groups, but the intercepts differ. That’s
why indicator variables like di are often called “intercept shifters.”

(b)
z′ε =

[
i′ε
d′ε

]
=

[ ∑n
i=1 εi∑
i|di=1 εi

]
The second summation is only over individuals for whom di = 1.

(c)

b2 =
(
x′M1x

)−1
x′M1y

M1 = I− z
(
z′z
)−1

z′

where I is an n by n identity matrix.

(d) Plugging in the full regression model for y in the partitioned regression form of b2 and taking
expectations yields:

E (b2|x,d) =

E
((

x′M1x
)−1

x′M1zβz

)
+

E
((

x′M1x
)−1

x′M1xβ2

)
+

E
((

x′M1x
)−1

x′M1ε
)

= β2

since M1z = 0 and E (z′ε) = E (x′ε) = 0 (and therefore E (x′M1ε) = 0).
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2. Question II (10 points)

(Continuation of Question I): Now assume the analyst ignores the binary indicator variable d, and
instead estimates the following (incorrect) model: y = iβ + xβ2 + ν.

(a) (2 pts.) Show the explicit form of ν.

(b) (2 pts.) Let b̂2 be the OLS estimator for β2 for this model. Write its solution in partitioned
regression form, and show the explicit form of the residual maker matrix M1 in this case.

(c) (4 pts.) Show that b̂2 is a biased estimator for β2 (conditional on x).

(d) (2 pts.) Show that - trivially - the bias vanishes if di = 0, ∀i, or di = 1, ∀i (i.e. if n1 = 0 or
n1 = n).
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Solutions:

(a) ν = β1d + ε

(b)

b̂2 =
(
x′M1x

)−1
x′M1y

M1 = I− i
(
i′i
)−1

i′ = M0,

where M0 is the deviation-from-mean matrix.

(c) Plugging in the full (TRUE!) regression model for y in the partitioned regression form of b̂2
and taking expectations yields:

E
(
b̂2|x,d

)
=

E
((

x′M0x
)−1

x′M0iβ0

)
+

E
((

x′M0x
)−1

x′M0xβ2

)
+

E
((

x′M1x
)−1

x′M0dβ1

)
+

E
((

x′M1x
)−1

x′M0ε
)

=

β2 +
(
x′M1x

)−1
x′M0dβ1 6= β2

So while M0i = 0 and E (x′M0ε) = 0, the third expectation term does not go to zero. More
explicitly:

x′M0d =
n∑
i=1

(
xi ∗

(
di − d̄

))
=

n∑
i=1

(xi ∗ di)− d̄
n∑
i=1

xi

where d̄ = n1. So this term only goes to zero if di = 0 ∀i or di = 1 ∀i. Note that in the former
case d̄ = 0, and in the latter case d̄ = 1.
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3. Question III (10 points)

Let θ̂ be an asymptotically normal, consistent estimator for θ, with θ > 0.

(a) (2 pts.) Find a consistent estimator for γ = log (θ), and state your reasoning, where “log”
denotes the natural logarithm. Call the estimator γ̂.

(b) (2 pts.) Let Vθ̂ be the asymptotic variance of θ̂. Show the general form of the asymptotic
variance of γ̂ (call it Vγ̂).

(c) (2 pts.) Assume you collect a sample of data, and estimate θ̂ = 4, with s.e.
(
θ̂
)

= 2, where

“s.e.” denotes the asymptotic standard error. Compute γ̂ and its asymptotic standard error.

(d) (2 pts.) Using the actual numbers form above, construct a z-test for H0 : θ = 1. State your
decision (use α = 0.05).

(e) (2 pts.) Now argue that the same null could be equivalently expressed as H0 : γ = log (θ) = 0
and perform the corresponding test. Compare your result to the previous test - what do
you conclude regarding logically equivalent (asymptotic) hypothesis tests based on nonlinear
transformations of parameters?
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Solutions:

(a) A good candidate might be γ̂ = log
(
θ̂
)

. By the Slutsky theorem we have:

plim (γ̂) = plim
(
log
(
θ̂
))

= log
(

plim
(
θ̂
))

= log (θ) = γ

(b) Using the Delta method we have:

Vγ̂ =

∂log
(
θ̂
)

∂θ

2

Vθ̂ =
1

θ̂2
Vθ̂

(c)

γ̂ = log (4) ≈ 1.39

s.e (γ̂) =
√
Vγ̂ =

√
1

4
= 1

2

(d)
z =

θ̂ − 1

s.e.
(
θ̂
) =

3

2
= 1.5

Fail to reject the null (the critical z-value is 1.96).
(e)

z =
γ̂

s.e. (γ̂)
=

1.39

0.5
= 2.78

Strongly reject the null. This shows that logically equivalent (asymptotic) hypothesis tests
based on nonlinear transformations can nonetheless lead to different decision rules.
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