
AAEC/ECON 5126 MIDTERM EXAM: SOLUTIONS

SPRING 2020 / INSTRUCTOR: KLAUS MOELTNER

You have until Thu, March 26, midnight, to complete this exam. Please create a single pdf
with all text and equations typed in LaTeX, and submit it via Canvas. Q1 asks for some
graphs - you can create those in Powerpoint or some other simple graphing software and add it
to your pdf, OR write it on paper and take picture with your cell phone, and add the picture as a
separate file when you submit the midterm (or figure out how to add it to your pdf). I would like to
try Canvas for your first attempt to submit the exam. If this gives you trouble, you can also send
it to me via e-mail attachment. I do not want you to worry about how to submit.

1. Question I (15 points)

Consider the CLRM for a full sample of n observations:

y = β0i + β1d + β2x + β3 (x ∗ d) + ε, (1)

where all the usual assumptions hold, i is an n by 1 vector of “1”s, d is an indicator variable that
takes the value of “1” for person i if that person belongs to a specific category (e.g. “female”), and
a value of “0” otherwise, and x is a continuous explanatory variable. The last term, x ∗ d is an
interaction term of x and d, with elements:

x̃ = x ∗ d =


x1 ∗ d1
x2 ∗ d2

...
xn ∗ dn


Assume that n1 of the n individuals belong to the indexed category for whom di = 1 (with
0 < n1 < n).

(I) (4 pts.) For a single observation, show the form of: E (yi|di = 0, xi), E (yi|di = 1, xi), and
E (yi|di = 1, xi) − E (yi|di = 0, xi). Is the marginal effect (“slope”) of xi on E (yi|xi, di) the
same for both groups or not? How about the intercept?

(II) (4 pts.) Draw a graph for each of the following situations, with x on the x-axis, and y on the
y-axis. Each graph should show two lines, one for E (y|d = 0, x), and one for E (y|d = 1, x).
Throughout assume that β0, β2 > 0:

(a) β1 > 0 and β3 > 0
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(b) β1 < 0 and β3 > 0
(c) β1 > 0 and β3 < 0
(d) β1 < 0 and β3 < 0

(III) (4 pts.) Consider the following changes to your data:

(a) Assume somebody eliminates all cases for which di = 1 from the sample. Could you still
estimate the model in (1)? Why or why not? Can you show a simpler model that could
still be estimated?

(b) Assume, instead, that you have all the data, but x is also a binary (0/1) indicator with
some 0’s and some 1’s. What problem could this cause for the estimation of β3, espe-
cially in a small sample?

(IV) (3 pts.) Going back to the original model in (1) with all the original assumptions, assume
you want to perform the following hypothesis tests:

(a) The intercepts are the same for both groups.
(b) The slopes are the same for both groups.
(c) Intercepts and slopes are the same for both groups.

For each test do the following:
(i) Write the null hypothesis in mathematical notation (i.e. in terms of the individual β’s),
(ii) Derive the R-matrix and the q-vector for the test Rβ − q = 0,
(iii) Denote the number of restrictions for the corresponding F-test.

Solutions:

(I)

E (yi|di = 0, xi) = β0 + β2 ∗ xi
E (yi|di = 1, xi) = (β0 + β1) + (β2 + β3) ∗ xi
E (yi|di = 1, xi)− E (yi|di = 0, xi) = β1 + β3 ∗ xi

So in this case both the slopes (marginal effect of xi) and the intercepts differ between the
two groups.
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0 2 4 6 8 10

x

0

2

4

6

8

10

y

case (d)

E(y|d=0)
E(y|d=1)

(III) (a) No, since both d and x ∗ d would produce all zeros, violating the full-rank condition
(A2) of the CLRM. Once could still estimate y = β0i + β2x + ε, using only the di = 0
cases.

(b) This could produce a situation where all or almost all elements of x ∗ d are 0’s or 1’s,
which would make it impossible / difficult to estimate β3.

(IV) H0 : β1 = 0
R =

[
0 1 0 0

]
q = 0
J = 1

(V) H0 : β3 = 0
R =

[
0 0 0 1

]
q = 0
J = 1

(VI) H0 : β1 = 0, β3 = 0

R =

[
0 1 0 0
0 0 0 1

]
q =

[
0 0

]′
J = 2
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2. Question II (7 points)

Let θ̂1 and θ̂2 be asymptotically normal, consistent estimators for θ1 and θ2, respectively, with
θ1, θ2 > 0.

(I) (1 pt.) Find a consistent estimator for γ = log(θ1)
log(θ2)

, and state your reasoning, where “log”

denotes the natural logarithm. Call the estimator γ̂.

(II) (4 pts.) Let V11 and V22 be the asymptotic variances of θ1 and θ2, respectively, and assume
the asymptotic covariance is zero. Show the general form of the asymptotic variance of γ̂
(call it Vγ̂), as well as the general form of its asymptotic standard error. The asymptotic
variance should be shown as a simple sum of two multiplicative terms.

(III) (1 pt.) Assume you have some (asymptotic) estimates for these variances and standard er-

rors, i.e. V̂11, V̂22, ˆs.e. (γ̂). Show how you would set up a hypothesis test of γ̂ = 1 (you can
assume asymptotic normality for γ̂. Show as many details as possible.

(IV) (1 pt.) How would you set up a logically equivalent hypothesis test involving θ̂1 and θ̂2?
Show as many details as possible.

Solutions:

(I) A good candidate might be γ̂ =
log(θ̂1)
log(θ̂2)

. By the Slutsky theorem we have:

plim (γ̂) = plim

 log
(
θ̂1

)
log
(
θ̂2

)
 =

plim
(
log
(
θ̂1

))
plim

(
log
(
θ̂2

)) =
log
(

plim
(
θ̂1

))
log
(

plim
(
θ̂2

)) =
log (θ1)

log (θ2)
= γ

(II) Using the Delta method we have:

Vγ̂ =
[
∂γ
∂θ1

∂γ
∂θ2

]
∗
[
V11 0
0 V22

]
∗

[
∂γ
∂θ1
∂γ
∂θ2

]
=

[
(θ1 ∗ log (θ2))

−1 −log (θ1) (log (θ2))
−2 θ−12

]
∗
[
V11 0
0 V22

]
∗
[

(θ1 ∗ log (θ2))
−1

−log (θ1) (log (θ2))
−2 θ−12

]
=

(θ1 ∗ log (θ2))
−2 ∗ V11 + (−log (θ1))

2 (log (θ2))
−4 θ−22 ∗ V22

s.e. (γ̂) =
√
Vγ̂

(III) H0: γ = 1
Determine level of significance (e.g. α = 0.05). Compute z-value:

z =
γ̂ − 1

ŝ.e. (γ̂)
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Reject if p (z) < α/2 (or if |z| > zα/2), else fail to reject

(IV) H0: θ1 − θ2 = 0
Compute:

d̂ =
(
θ̂1 − θ̂2

)
, and

ˆs.e.
(
d̂
)

=

√
V̂d =

√
V̂11 + V̂22

Determine level of significance (e.g. α = 0.05). Compute z-value:

z =
d̂

ˆs.e.
(
d̂
)

Reject if p (z) < α/2 (or if |z| > zα/2), else fail to reject
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3. Question III (8 points)

Consider the Rayleigh distribution with scale parameter γ:

f (y) = γ−2 ∗ y ∗ exp
(
−
(
2γ2
)−1

y2
)

γ > 0, 0 < y <∞

E (y) = γ (π/2)1/2

V (y) = γ2 (2− (π/2))

(2)

(I) (1 pt.) Compute E
(
y2
)

- you will need this for part (IV) below. (Hint: Use a well-known

relationship between V (y), E (y), and E
(
y2
)
)

(II) (2 pts.) Consider a sample of n draws of yi, i = 1 . . . n from this distribution. Derive the
sample log-likelihood function lnL (γ) and the sample gradient g (γ). Simplify as much as
possible.

(III) (1 pt.) Solve for the MLE estimator γ̂.

(IV) (2 pts.) Using the sample gradient, show that the score identiy holds.

(V) (2 pts.) Derive the sample Hessian H (γ) and show that your result in (II) is indeed a
maximum.

Solutions:

(I) E
(
y2
)

= V (y) + (E (y))2 = γ2 (2− (π/2)) + γ2 (π/2) = 2γ2

(II)

lnl (γ) = −2lnγ + lnyi −
(
2γ2
)−1

y2i

lnL (γ) = −2nlnγ +
n∑
i=1

lnyi −
(
2γ2
)−1 n∑

i=1

y2i

g (γ) = −2nγ−1 + 4γ
(
2γ2
)−2 n∑

i=1

y2i = −2nγ−1 + γ−3
n∑
i=1

y2i

(III)

γ̂ =

√∑n
i=1 y

2
i

2n

(IV)

Ey (g (γ)) = −2nγ−1 + γ−3E

(
n∑
i=1

y2i

)
= −2nγ−1 + γ−32nγ2 = 0
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(V)

H (γ) = 2nγ−2 − 3γ−4
n∑
i=1

y2i

H (γ̂) = H

(2n)−1/2
(

n∑
i=1

y2i

)1/2
 =

2n

(2n)

(
n∑
i=1

y2i

)−1− 3

(
n∑
i=1

y2i

)(2n)2
(

n∑
i=1

y2i

)−2 =

− 8n2

(
n∑
i=1

y2i

)−1
< 0
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