
Economic Valuation of Environmental Change

Module 5.4: Choice Experiments: Application 1:

Red Tide air quality forecast in SW Florida
Book chapters: PR Ch. 19, CBB CH. 5

LaTex commands

Background
Blooms of Karenia brevis, commonly referred to as "Red Tide" (RT), in southwest Florida are known for causing
respiratory irritation and illness in humans via aerosolized toxins (when cells are broken up by wind and waves),
among other environmental impacts.

These blooms have also become more frequent, severe, and longer-lasting in recent years, affecting all sorts of
outdoor activities and thus the daily life of locals, as well as many aspects of Florida's tourism industry. Local
governments have spent considerable amounts on mitigating or possibly preventing blooms using scientific and
engineering tools, but somewhat limited attention has been given to the design of improved air quality
forecasts.

We hypothesize that more temporally and spatially more refined forecasts would help the local population to
adapt to red tide conditions by timing and siting outdoor activities to avoid exposure to high toxin
concentrations during a bloom.

A group of VT researchers thus teamed up with Mote Marine Laboratories (MML) in Sarasota, FL - the premier
scientific clearinghouse for RT research - to implement a pilot project geared towards the development of an
improved forecasting system.

At the heart of these activities was a survey based choice experiment (CE) to understand the individual (and
combined) value of different forecasting attributes to the underlying population.

At a broader level, we argued that a better understanding of the societal values of an improved forecast would
give policymakers guidance as to the optimal levels of investment to develop such a system. In other words, we
wanted to find out if societal benefits would outweigh (expected / estimated) costs of implementation.

Background materials
The paper coming out of this research has been conditionally accepted at Marine Resource Economics. It includes
all relevant details on focus groups, survey design, experimental design, and econometric modeling.

Here is are the links to the paper and the survey instrument:

RT paper
RT survey

https://mote.org/
file:///C:/Users/moeltner/AppData/Local/Temp/RTforecastMRE_manuscript_plus_onlineAppendix_R1.pdf
file:///C:/Users/moeltner/AppData/Local/Temp/RTsurvey.pdf

As shown in the paper, close to 90% of the target population (five SW-FL gulf coast counties) engaged in some
form of outdoor activities in the 12 months preceding the survey.

The average household spends approximately 16 hours / week on outdoor activities, and an additional 8-9 hours
in outside areas of their house or property.

Thus, it is clear that the typical 5-county household is at a high risk of exposure to RT toxins if it wants to follow
its typical outdoor lifestyle. This also suggests that a better forecast could indeed be helpful and relevant for the
majority of stakeholders.

The survey also confirmed that past RT blooms have hampered these activities to some extent. At the extreme
end of the impact range, people have sold their coastal home and moved inland, sold their boat or water gear,
and even gave up coastal jobs or volunteer work to avoid exposure to RT toxins.

In sum, RT-impacted air quality is indeed a recurring and pervasive problem in that area, and our project is
thus well-targeted.

Estimation
In [20]: # Import packages we'll need for this module

from numpy import * # numpy is used a lot in Python, and some load it "as np" - but then
every time we use a numpy command, so I prefer not to use a prefix in this case
from numpy.linalg import inv #not really necessary since we already imported the entire n
but makes life easier taking inverses, else we would have to type "linalg.inv" all the t
from numpy.linalg import det #same for determinant
import matplotlib.pyplot as plt
from scipy.stats import invgamma #for draws from inverse gamma
from scipy.stats import norm #for evaluating normal priors for betas
from scipy.optimize import minimize #needed for MLE routine within the GS
from sklearn.neighbors import KernelDensity as KD #for smoth plotting of the (empirical) d
import pandas as pd #for creating data frames and output tables
import math #for pi
from scipy.special import gammaln #for evaluating the multivariate t-density - same s Matl

In [21]: #read in csv data
######################################
dataf=pd.read_csv("data\RTdata.csv")
this comes in as a dataframe, thus the "f" suffix

Contents of data

1 id running respondent id (12 rows / person)
2 set choice set (1 through 4)
3 idset id x set (running id for triplets of rows)
4 option choice option (= "alternative," or "profile") (1 through 3)
5 origBlock original choice block (= survey version x rotation)
6 block survey version (1-5)
7 rotation choice set rotation within block (1-4)
8 income approx. HH income, dollars
9 cov forecast coverage (6 or 12 miles)
10 acc1 forecast accuracy, first 12 hours (50,75,100)
11 acc2 forecast accuracy, second 12 hours (50,75,100)
12 bid price / bid ($; 0 (SQ), 5, 15, 25, 35)
13 vote indicator for chosen alternative (1-3)
14 choice vote translated to binary (1=chosen)
15 allNO chose SQ for all 4 questions

id set idset option origBlock block rotation income cov acc1 ... acc1100ec acc275ec acc2100ec

0 1 1 1 1 2.4 2 4 162500 6 100 ... 1 1 0

1 1 1 1 2 2.4 2 4 162500 12 50 ... -1 -1 -1

2 1 1 1 3 2.4 2 4 162500 0 0 ... 0 0 0

3 1 2 2 1 2.4 2 4 162500 12 100 ... 1 0 1

4 1 2 2 2 2.4 2 4 162500 6 50 ... -1 -1 -1

...

6019 502 3 2007 2 2.3 2 3 87500 12 50 ... -1 -1 -1

6020 502 3 2007 3 2.3 2 3 87500 0 0 ... 0 0 0

6021 502 4 2008 1 2.3 2 3 87500 6 100 ... 1 1 0

6022 502 4 2008 2 2.3 2 3 87500 12 50 ... -1 -1 -1

6023 502 4 2008 3 2.3 2 3 87500 0 0 ... 0 0 0

6024 rows × 45 columns

16 protNO 1= protest NO response
17 badFollow 1= ANY problematic follow-up response
18 genBad 1 = combo of protNO and badFollow
19 badFollow2 1 = disagr. on confident, actual/same vote or ownmind
20 genBad2 1 = combo of protNO and badFOllow2 - USE THIS!!!
21 sq SQ indicator (3rd option)
22 covacc1 linear interaction cov / acc1
23 covacc2 linear interaction cov / acc2
24 acc1acc2 linear interaction acc1 / acc2
25 cov12 basic dummy for coverage=12
26 acc175 basic dummy for acc1=75
27 acc1100 basic dummy for acc1=100
28 acc275 basic dummy for acc2=75
29 acc2100 basic dummy for acc2=100
30 cov12acc175 binary interaction cov12 dummy with acc175 dummy
31 cov12acc1100
32 cov12acc275
33 cov12acc2100
34 cov12ec effect code variable for coverage=12
35 acc175ec
36 acc1100ec
37 acc275ec
38 acc2100ec
39 cov12acc175ec
40 cov12acc1100ec
41 cov12acc275ec
42 cov12acc2100ec
43 existused
44 hrsout total hours per week spent outside by all HH members
45 hrsyardc total hours per week spent outside around house by HH

note the data are already in long format, which each row corresponding to a single choic
rows corresponding to a single choice set - third row is always the SQ (here just zeros
Thus, the data already has the form of our "ybig" and "Xbig" from the simulated model.

display(dataf)

In [22]: ###
It is convenient to "clean" the data while we're still in a dataframe

1000
2000
3000

eliminate protest responses

df1 = dataf[dataf['genBad2'] == 0]

We ned to convert the dataframe to an array for further processing

data = df1.to_numpy()

N=1472 #number of (presumed) independent choice occasions (368 individuals @ 4 occasions)
J=3 #number of choice options, including SQ

ybig=data[:,13:14] #14th column, 0/1 indictor for each choice option
Xbig = concatenate((data[:,20:21],data[:,24:29],data[:,11:12]),axis=1)
k=shape(Xbig)[1] #get column dimension

Xbig.shape=(N*J,k)
ybig.shape=(N*J,1)

Contents of Xbig
#############################
1 sq SQ dummy (flags SQ option)
2 cov12 basic dummy for coverage=12
3 acc175 basic dummy for acc1=75
4 acc1100 basic dummy for acc1=100
5 acc275 basic dummy for acc2=75
6 acc2100 basic dummy for acc2=100
7 bid

check if means are same as stata
#print(mean(ybig))
#tt=Xbig.mean(0)
#print(tt) #OK, all good

In [36]: #TUNERS
##############
r1 = 10000 #burn-ins, be generous for limited dep. variable problems
r2 = 10000 #keepers
R = r1 + r2

#PRIORS:
###################
#for beta:
mu0 = zeros((k,1))
V0 = 100*identity(k)

tau=1 #tuner for variance in t-distribution
v=30 #degrees of freedom for t-distribution
betadraw=0.1*ones((k,1)) #something not too extreme, relatively close to zero to avoid "lo

In [37]: # run GS

random.seed(37) #don't forget to set the random seed

%run functions/gs_clogit.ipynb #actual GS function

now execute the function
[betamat,accept]=gs_clogit(Xbig,ybig,k,J,N,r1,r2,mu0,V0,tau,v,betadraw)

4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000

 post.mean post.std p(>0) nse IEF M* CD

SQ -0.803 0.105 0.000 0.001 1.127 8,870 0.086

band=12 0.111 0.094 0.880 0.001 1.170 8,547 1.346

acc1=75% 0.264 0.130 0.980 0.001 1.115 8,967 0.647

acc1=100% 0.939 0.143 1.000 0.002 1.163 8,596 0.524

acc2=75% 0.222 0.095 0.990 0.001 1.170 8,549 0.015

acc2=100% -0.007 0.128 0.477 0.001 1.130 8,847 0.315

price -0.047 0.005 0.000 0.000 1.229 8,139 -1.722

The acceptance rate is:

0.92

In [38]: # import the "kdiagnostics" function from your "functions" folder
%run functions/kdiagnostics.ipynb

now execute the function
diagnostics=kdiagnostics(betamat)

In [39]: # convert diagnostics matrix to data frame for plotting

myframe = pd.DataFrame(diagnostics)
myframe.index = pd.Index(["SQ", "band=12", "acc1=75%", "acc1=100%", "acc2=75%", "acc2=100%
myframe.columns = ["post.mean", "post.std", "p(>0)", "nse", "IEF", "M*", "CD"]

#myframe = frame.style.format("{:,.3f}") #this sets all entries to 3 decimals

this is more slective:
myframeNice = myframe.style.format({"post.mean": "{:,.3f}",
 "post.std": "{:,.3f}",
 "p(>0)": "{:,.3f}",
 "nse": "{:,.3f}",
 "IEF": "{:,.3f}",
 "CD": "{:,.3f}",
 "M*": "{:,.0f}"})
display(myframeNice)
#print(frame) #produces a raw-looking table, this is nicer

In [40]: print(round(accept,2))

Marginal WTP
The marginal WTP, also referred to as "implicit price" for each attribute effect captured in the model is obtained
by dividing the corresponding attribute coefficient by the negative value of the price coefficient.

Let's capture these marginal WTP values, along with their HPDIs and show them in a separate table.

 lower bound post. mean upper bound

band=12 -1.448 2.281 6.057

acc1=75% 0.211 5.643 11.050

In [41]: save("output/RTResults", array([betamat,accept], dtype=object), allow_pickle = True)
this gets rid of the "depreciated" warning message...
to load, use: [betamat,accept] = load("output\simResults.npy", allow_pickle = True)

In [55]: # extract attribute effects and price from betamat

attmat=betamat[1:k-1,:] #rows 2 through k-1
bprice=-betamat[k-1:k,:] #last row

replicate price row and divide

pricemat=tile(bprice,(k-2,1)) #replicate bprice k-2 times in the row dimension
margmat=attmat/pricemat #still 5 by 10000

Get HPDI bounds

%run functions/khpdi.ipynb #call function
short loop to get bounds for all cases
katt=5 #number of attribute effects
hpdimat=zeros([katt,2]) #first column for lower bound, second for upper

for i in range(0,katt):
 int1=margmat[i:i+1,:].T #needs to be column vector
 [L,U]=khpdi(int1,0.05,1000)
 hpdimat[i,0]=L
 hpdimat[i,1]=U

postmean = mean(margmat,axis=1)
postmean.shape=(5,1)
outmat=concatenate((hpdimat[:,0:1],postmean,hpdimat[:,1:2]),axis=1)

convert HPDI matrix to data frame for plotting

myframe = pd.DataFrame(outmat)

myframe.index = pd.Index(["band=12", "acc1=75%", "acc1=100%", "acc2=75%", "acc2=100%"])
myframe.columns = ["lower bound", "post. mean", "upper bound"]

#myframe = frame.style.format("{:,.3f}") #this sets all entries to 3 decimals

this is more slective:
myframeNice = myframe.style.format({"lower bound": "{:,.3f}",
 "post. mean": "{:,.3f}",
 "upper bound": "{:,.3f}"})
display(myframeNice)
#print(frame) #produces a raw-looking table, this is nicer
OK, same as Matlab's - just checking...

 lower bound post. mean upper bound

acc1=100% 14.846 20.164 24.985

acc2=75% 0.733 4.786 8.910

acc2=100% -5.725 -0.179 5.171

Predictions
Let's derive the PPDs of total WTP for all meaningful attribute combinations (where acc2 does not exceed acc1),
and display the mean along with HPDI bounds.

In [82]: # generate each possible forecast scenario

x1= array([[0, 0, 0, 0, 0, 0]]) #double-bracket forces this to be a row vector
x2= array([[0, 0, 1, 0, 0, 0]])
x3= array([[0, 0, 1, 0, 1, 0]])
x4= array([[0, 0, 0, 1, 0, 0]])
x5= array([[0, 0, 0, 1, 1, 0]])
x6= array([[0, 0, 0, 1, 0, 1]])
x7= array([[0, 1, 0, 0, 0, 0]])
x8= array([[0, 1, 1, 0, 0, 0]])
x9= array([[0, 1, 1, 0, 1, 0]])
x10=array([[0, 1, 0, 1, 0, 0]])
x11=array([[0, 1, 0, 1, 1, 0]])
x12=array([[0, 1, 0, 1, 0, 1]])

X1=concatenate((x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12),axis=0) #12 by 6
X0=concatenate((ones([shape(X1)[0],1]),zeros([shape(X1)[0],shape(X1)[1]-1])),axis=1) #just

int1=(X1-X0) @ betamat[0:k-1,:] #12 by 10000

#replicate price coeff. draws 12 times in the row dimension
lammat=tile(bprice,(12,1))

#generate 12 PPDs for total WTP
WTPmat=int1/lammat

Get HPDI bounds

short loop to get bounds for all cases
kp=12 #number of attribute effects
hpdimat=zeros([kp,2]) #first column for lower bound, second for upper

for i in range(0,kp):
 int1=WTPmat[i:i+1,:].T #needs to be column vector
 [L,U]=khpdi(int1,0.05,1000)
 hpdimat[i,0]=L
 hpdimat[i,1]=U

postmean = mean(WTPmat,axis=1)
postmean.shape=(12,1)
outmat=concatenate((hpdimat[:,0:1],postmean,hpdimat[:,1:2]),axis=1)

convert HPDI matrix to data frame for plotting

myframe = pd.DataFrame(outmat)

myframe.index = pd.Index(["6,50,50", "6,75,50", "6,75,75", "6,100,50", "6,100,75", "6,100,
 "12,50,50", "12,75,50", "12,75,75", "12,100,50", "12,100,75", "12
myframe.columns = ["lower bound", "post. mean", "upper bound"]

 lower bound post. mean upper bound

6,50,50 12.317 17.359 22.772

6,75,50 18.089 23.002 28.297

6,75,75 22.041 27.788 33.255

6,100,50 32.274 37.523 43.114

6,100,75 36.498 42.309 48.486

6,100,100 32.068 37.344 42.952

12,50,50 15.057 19.640 24.544

12,75,50 20.227 25.283 30.028

12,75,75 25.374 30.069 34.804

12,100,50 34.814 39.804 44.653

12,100,75 39.825 44.590 49.588

12,100,100 34.854 39.625 44.877

Aggregate predictions
As a final step, let's derive the aggregate WTP per year for all 835,000 households that live in the 5-county
research area.

Let's do this for the least (6,50,50) desirable, and most (12,100,75) desirable forecast scenario. We will plot the
corresponding PPDs along with HPDI bounds.

#myframe = frame.style.format("{:,.3f}") #this sets all entries to 3 decimals

this is more slective:
myframeNice = myframe.style.format({"lower bound": "{:,.3f}",
 "post. mean": "{:,.3f}",
 "upper bound": "{:,.3f}"})
display(myframeNice)
#print(frame) #produces a raw-looking table, this is nicer
OK, same as Matlab's - just checking...

In [87]: #predict agg WTP, in millions
aggmat=0.835*concatenate((WTPmat[0:1,:],WTPmat[10:11,:]),axis=0) #2 by 10000

Get HPDI bounds

short loop to get bounds for all cases
kagg=2 #number of attribute effects
hpdimat=zeros([kagg,2]) #first column for lower bound, second for upper

for i in range(0,kagg):
 int1=aggmat[i:i+1,:].T #needs to be column vector
 [L,U]=khpdi(int1,0.05,1000)
 hpdimat[i,0]=L
 hpdimat[i,1]=U

In [96]: # get kernel density estimates for each coefficient for smooth plotting

yS1=aggmat[0:1,:] #low-level forecast
yS2=aggmat[1:2,:] #high-level forecast

L1=hpdimat[0,0]
U1=hpdimat[0,1]

L2=hpdimat[1,0]
U2=hpdimat[1,1]

x01 = linspace(-20,100,r2)[:,newaxis]
kde1 = KD(kernel='gaussian', bandwidth=2).fit(yS1.T) #re-shape to column vector
logdens1 = kde1.score_samples(x01) #needs 2-D array

x02 = linspace(-20,100,r2)[:,newaxis] #np. newaxis (or short: newaxis in our case) turns l
kde2 = KD(kernel='gaussian', bandwidth=2).fit(yS2.T) #re-shape to column vector
logdens2 = kde2.score_samples(x02) #needs 2-D array

In [103… # Initiate Figure

fig,ax = plt.subplots(2,1,figsize=(16,8))

subplot (1,1): posteriors for "low-level forecast"

ax[0].plot(x01,exp(logdens1),'b-', lw=1, label='PPD')
ax[0].set_xlim([0,60])
ax[0].axvline(x= L1,color='g') #add lower bound line
ax[0].axvline(x= U1,color='g') #add upper bound line
ax[0].set_xlabel('WTP ($ millions)') #the "r" is needed to render latex in graph labels an
ax[0].set_ylabel('density')
ax[0].set_title('Posterior distributions of agg. WTP/year for (6,50,50) forecast with 95%
#ax[0].legend()

subplot (1,1): posteriors for "high-level forecast"

ax[1].plot(x02,exp(logdens2),'b-', lw=1, label='PPD')
ax[1].set_xlim([0,60])
ax[1].axvline(x= L2,color='g') #add lower bound line
ax[1].axvline(x= U2,color='g') #add upper bound line
ax[1].set_xlabel('WTP ($ millions)') #the "r" is needed to render latex in graph labels an
ax[1].set_ylabel('density')
ax[1].set_title('Posterior distributions of agg. WTP/year for (12,100,75) forecast with 95
#ax[1].legend()

adjust spacing between subplots
plt.subplots_adjust(wspace=0.1, hspace=0.8)

References:
Moeltner, K., T. Fanara, H. Foroutan, R. Hanlon, V. Lovko, S. Ross, and D. Schmale III, "Harmful algal blooms and
toxic air: The economic value of improved forecasts," paper presented at the annual meetings of the European
Association of Environmental and Resource Economists (EAERE), virtual, Jun. 25, 2021.

