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Background
Blooms of Karenia brevis, commonly referred to as "Red Tide" (RT), in southwest Florida are known for causing
respiratory irritation and illness in humans via aerosolized toxins (when cells are broken up by wind and waves),
among other environmental impacts.

These blooms have also become more frequent, severe, and longer-lasting in recent years, affecting all sorts of
outdoor activities and thus the daily life of locals, as well as many aspects of Florida's tourism industry. Local
governments have spent considerable amounts on mitigating or possibly preventing blooms using scientific and
engineering tools, but somewhat limited attention has been given to the design of improved air quality
forecasts.

We hypothesize that more temporally and spatially more refined forecasts would help the local population to
adapt to red tide conditions by timing and siting outdoor activities to avoid exposure to high toxin
concentrations during a bloom.

A group of VT researchers thus teamed up with Mote Marine Laboratories (MML) in Sarasota, FL - the premier
scientific clearinghouse for RT research - to implement a pilot project geared towards the development of an
improved forecasting system.

At the heart of these activities was a survey based choice experiment (CE) to understand the individual (and
combined) value of different forecasting attributes to the underlying population.

At a broader level, we argued that a better understanding of the societal values of an improved forecast would
give policymakers guidance as to the optimal levels of investment to develop such a system. In other words, we
wanted to find out if societal benefits would outweigh (expected / estimated) costs of implementation.

Background materials
The paper coming out of this research has been conditionally accepted at Marine Resource Economics. It includes
all relevant details on focus groups, survey design, experimental design, and econometric modeling.

Here is are the links to the paper and the survey instrument:

RT paper
RT survey

https://mote.org/
file:///C:/Users/moeltner/AppData/Local/Temp/RTforecastMRE_manuscript_plus_onlineAppendix_R1.pdf
file:///C:/Users/moeltner/AppData/Local/Temp/RTsurvey.pdf


As shown in the paper, close to 90% of the target population (five SW-FL gulf coast counties) engaged in some
form of outdoor activities in the 12 months preceding the survey.

The average household spends approximately 16 hours / week on outdoor activities, and an additional 8-9 hours
in outside areas of their house or property.

Thus, it is clear that the typical 5-county household is at a high risk of exposure to RT toxins if it wants to follow
its typical outdoor lifestyle. This also suggests that a better forecast could indeed be helpful and relevant for the
majority of stakeholders.

The survey also confirmed that past RT blooms have hampered these activities to some extent. At the extreme
end of the impact range, people have sold their coastal home and moved inland, sold their boat or water gear,
and even gave up coastal jobs or volunteer work to avoid exposure to RT toxins.

In sum, RT-impacted air quality is indeed a recurring and pervasive problem in that area, and our project is
thus well-targeted.

Estimation
In [20]: # Import packages we'll need for this module 

################################################ 
from numpy import *  # numpy is used a lot in Python, and some load it "as np" - but then 
# every time we use a numpy command, so I prefer not to use a prefix in this case 
from numpy.linalg import inv  #not really necessary since we already imported the entire n
# but makes life easier taking inverses, else we would have to type "linalg.inv" all the t
from numpy.linalg import det #same for determinant 
import matplotlib.pyplot as plt 
from scipy.stats import invgamma #for draws from inverse gamma 
from scipy.stats import norm #for evaluating normal priors for betas 
from scipy.optimize import minimize #needed for MLE routine within the GS 
from sklearn.neighbors import KernelDensity as KD #for smoth plotting of the (empirical) d
import pandas as pd #for creating data frames and output tables 
import math #for pi 
from scipy.special import gammaln #for evaluating the multivariate t-density - same s Matl

In [21]: #read in csv data 
###################################### 
dataf=pd.read_csv("data\RTdata.csv") 
# this comes in as a dataframe, thus the "f" suffix 
 
# Contents of data 
################################################################ 
 
# 1  id                running respondent id (12 rows / person) 
# 2  set               choice set (1 through 4) 
# 3  idset             id x set (running id for triplets of rows) 
# 4  option            choice option (= "alternative," or "profile") (1 through 3)  
# 5  origBlock         original choice block (= survey version x rotation) 
# 6  block             survey version (1-5)               
# 7  rotation          choice set rotation within block (1-4)                
# 8  income            approx. HH income, dollars 
# 9  cov               forecast coverage (6 or 12 miles)                
# 10 acc1              forecast accuracy, first 12 hours (50,75,100)              
# 11 acc2              forecast accuracy, second 12 hours (50,75,100)                 
# 12 bid               price / bid ($; 0 (SQ), 5, 15, 25, 35)                
# 13 vote              indicator for chosen alternative (1-3)                
# 14 choice            vote translated to binary (1=chosen)                
# 15 allNO             chose SQ for all 4 questions 



id set idset option origBlock block rotation income cov acc1 ... acc1100ec acc275ec acc2100ec

0 1 1 1 1 2.4 2 4 162500 6 100 ... 1 1 0

1 1 1 1 2 2.4 2 4 162500 12 50 ... -1 -1 -1

2 1 1 1 3 2.4 2 4 162500 0 0 ... 0 0 0

3 1 2 2 1 2.4 2 4 162500 12 100 ... 1 0 1

4 1 2 2 2 2.4 2 4 162500 6 50 ... -1 -1 -1

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

6019 502 3 2007 2 2.3 2 3 87500 12 50 ... -1 -1 -1

6020 502 3 2007 3 2.3 2 3 87500 0 0 ... 0 0 0

6021 502 4 2008 1 2.3 2 3 87500 6 100 ... 1 1 0

6022 502 4 2008 2 2.3 2 3 87500 12 50 ... -1 -1 -1

6023 502 4 2008 3 2.3 2 3 87500 0 0 ... 0 0 0

6024 rows × 45 columns

# 16 protNO            1= protest NO response 
# 17 badFollow         1= ANY problematic follow-up response 
# 18 genBad            1 = combo of protNO and badFollow 
# 19 badFollow2        1 = disagr. on confident, actual/same vote or ownmind 
# 20 genBad2           1 = combo of protNO and badFOllow2 - USE THIS!!! 
# 21 sq                SQ indicator (3rd option) 
# 22 covacc1           linear interaction cov / acc1                
# 23 covacc2           linear interaction cov / acc2                   
# 24 acc1acc2          linear interaction acc1 / acc2                 
# 25 cov12             basic dummy for coverage=12 
# 26 acc175            basic dummy for acc1=75                
# 27 acc1100           basic dummy for acc1=100                  
# 28 acc275            basic dummy for acc2=75                
# 29 acc2100           basic dummy for acc2=100                
# 30 cov12acc175       binary interaction cov12 dummy with acc175 dummy                
# 31 cov12acc1100                      
# 32 cov12acc275                       
# 33 cov12acc2100                      
# 34 cov12ec          effect code variable for coverage=12 
# 35 acc175ec                          
# 36 acc1100ec                         
# 37 acc275ec                          
# 38 acc2100ec                         
# 39 cov12acc175ec                     
# 40 cov12acc1100ec                    
# 41 cov12acc275ec                     
# 42 cov12acc2100ec  
# 43 existused 
# 44 hrsout          total hours per week spent outside by all HH members 
# 45 hrsyardc        total hours per week spent outside around house by HH 
 
# note the data are already in long format, which each row corresponding to a single choic
# rows corresponding to a single choice set - third row is always the SQ (here just zeros 
# Thus, the data already has the form of our "ybig" and "Xbig" from the simulated model. 
 
display(dataf) 

In [22]: ####################################################################### 
# It is convenient to "clean" the data while we're still in a dataframe 
####################################################################### 
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############################################################## 
# eliminate protest responses 
############################################################## 
df1 = dataf[dataf['genBad2'] == 0] 
 
 
# We ned to convert the dataframe to an array for further processing 
#################################################################### 
data = df1.to_numpy() 
 
N=1472 #number of (presumed) independent choice occasions (368 individuals @ 4 occasions) 
J=3 #number of choice options, including SQ 
 
ybig=data[:,13:14] #14th column, 0/1 indictor for each choice option 
Xbig = concatenate((data[:,20:21],data[:,24:29],data[:,11:12]),axis=1) 
k=shape(Xbig)[1] #get column dimension 
 
Xbig.shape=(N*J,k) 
ybig.shape=(N*J,1) 
 
# Contents of Xbig 
############################# 
# 1 sq                SQ dummy (flags SQ option) 
# 2 cov12             basic dummy for coverage=12 
# 3 acc175            basic dummy for acc1=75                
# 4 acc1100           basic dummy for acc1=100                  
# 5 acc275            basic dummy for acc2=75                
# 6 acc2100           basic dummy for acc2=100   
# 7 bid 
 
# check if means are same as stata 
#print(mean(ybig)) 
#tt=Xbig.mean(0)  
#print(tt) #OK, all good 

In [36]: #TUNERS 
############## 
r1 = 10000  #burn-ins, be generous for limited dep. variable problems                     
r2 = 10000 #keepers 
R = r1 + r2 
# 
#PRIORS: 
################### 
#for beta: 
mu0 = zeros((k,1)) 
V0 = 100*identity(k) 
 
tau=1 #tuner for variance in t-distribution 
v=30  #degrees of freedom for t-distribution 
betadraw=0.1*ones((k,1)) #something not too extreme, relatively close to zero to avoid "lo

In [37]: # run GS 
######################################################################### 
random.seed(37) #don't forget to set the random seed 
 
%run functions/gs_clogit.ipynb  #actual GS function 
# 
# now execute the function 
[betamat,accept]=gs_clogit(Xbig,ybig,k,J,N,r1,r2,mu0,V0,tau,v,betadraw) 
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  post.mean post.std p(>0) nse IEF M* CD

SQ -0.803 0.105 0.000 0.001 1.127 8,870 0.086

band=12 0.111 0.094 0.880 0.001 1.170 8,547 1.346

acc1=75% 0.264 0.130 0.980 0.001 1.115 8,967 0.647

acc1=100% 0.939 0.143 1.000 0.002 1.163 8,596 0.524

acc2=75% 0.222 0.095 0.990 0.001 1.170 8,549 0.015

acc2=100% -0.007 0.128 0.477 0.001 1.130 8,847 0.315

price -0.047 0.005 0.000 0.000 1.229 8,139 -1.722

The acceptance rate is:

0.92 

In [38]: # import the "kdiagnostics" function from your "functions" folder 
%run functions/kdiagnostics.ipynb 
# 
# now execute the function 
diagnostics=kdiagnostics(betamat) 

In [39]: # convert diagnostics matrix to data frame for plotting 
############################################################## 
myframe = pd.DataFrame(diagnostics) 
myframe.index = pd.Index(["SQ", "band=12", "acc1=75%", "acc1=100%", "acc2=75%", "acc2=100%
myframe.columns = ["post.mean", "post.std", "p(>0)", "nse", "IEF", "M*", "CD"] 
 
#myframe = frame.style.format("{:,.3f}") #this sets all entries to 3 decimals 
 
# this is more slective: 
myframeNice = myframe.style.format({"post.mean": "{:,.3f}", 
                                "post.std": "{:,.3f}", 
                                "p(>0)": "{:,.3f}", 
                                "nse": "{:,.3f}", 
                                "IEF": "{:,.3f}",  
                                "CD": "{:,.3f}",  
                                "M*": "{:,.0f}"}) 
display(myframeNice)  
#print(frame) #produces a raw-looking table, this is nicer 

In [40]: print(round(accept,2)) 



Marginal WTP
The marginal WTP, also referred to as "implicit price" for each attribute effect captured in the model is obtained
by dividing the corresponding attribute coefficient by the negative value of the price coefficient.

Let's capture these marginal WTP values, along with their HPDIs and show them in a separate table.

  lower bound post. mean upper bound

band=12 -1.448 2.281 6.057

acc1=75% 0.211 5.643 11.050

In [41]: save("output/RTResults", array([betamat,accept], dtype=object), allow_pickle = True) 
# this gets rid of the "depreciated" warning message... 
# to load, use: [betamat,accept] = load("output\simResults.npy", allow_pickle = True)  

In [55]: # extract attribute effects and price from betamat 
######################################################### 
attmat=betamat[1:k-1,:] #rows 2 through k-1 
bprice=-betamat[k-1:k,:] #last row 
 
# replicate price row and divide 
########################################################## 
pricemat=tile(bprice,(k-2,1)) #replicate bprice k-2 times in the row dimension 
margmat=attmat/pricemat #still 5 by 10000 
 
# Get HPDI bounds 
####################################################### 
%run functions/khpdi.ipynb #call function 
# short loop to get bounds for all cases 
katt=5 #number of attribute effects 
hpdimat=zeros([katt,2]) #first column for lower bound, second for upper 
 
for i in range(0,katt): 
    int1=margmat[i:i+1,:].T #needs to be column vector 
    [L,U]=khpdi(int1,0.05,1000) 
    hpdimat[i,0]=L 
    hpdimat[i,1]=U 
 
postmean = mean(margmat,axis=1) 
postmean.shape=(5,1) 
outmat=concatenate((hpdimat[:,0:1],postmean,hpdimat[:,1:2]),axis=1) 
 
# convert HPDI matrix to data frame for plotting 
############################################################## 
myframe = pd.DataFrame(outmat) 
 
myframe.index = pd.Index(["band=12", "acc1=75%", "acc1=100%", "acc2=75%", "acc2=100%"]) 
myframe.columns = ["lower bound", "post. mean", "upper bound"] 
 
#myframe = frame.style.format("{:,.3f}") #this sets all entries to 3 decimals 
 
# this is more slective: 
myframeNice = myframe.style.format({"lower bound": "{:,.3f}", 
                                "post. mean": "{:,.3f}", 
                                "upper bound": "{:,.3f}"}) 
display(myframeNice)  
#print(frame) #produces a raw-looking table, this is nicer 
# OK, same as Matlab's - just checking... 



  lower bound post. mean upper bound

acc1=100% 14.846 20.164 24.985

acc2=75% 0.733 4.786 8.910

acc2=100% -5.725 -0.179 5.171

Predictions
Let's derive the PPDs of total WTP for all meaningful attribute combinations (where acc2 does not exceed acc1),
and display the mean along with HPDI bounds.

In [82]: # generate each possible forecast scenario 
########################################## 
 
x1= array([[0, 0, 0, 0, 0, 0]]) #double-bracket forces this to be a row vector 
x2= array([[0, 0, 1, 0, 0, 0]]) 
x3= array([[0, 0, 1, 0, 1, 0]]) 
x4= array([[0, 0, 0, 1, 0, 0]]) 
x5= array([[0, 0, 0, 1, 1, 0]]) 
x6= array([[0, 0, 0, 1, 0, 1]]) 
x7= array([[0, 1, 0, 0, 0, 0]]) 
x8= array([[0, 1, 1, 0, 0, 0]]) 
x9= array([[0, 1, 1, 0, 1, 0]]) 
x10=array([[0, 1, 0, 1, 0, 0]]) 
x11=array([[0, 1, 0, 1, 1, 0]]) 
x12=array([[0, 1, 0, 1, 0, 1]]) 
 
X1=concatenate((x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12),axis=0) #12 by 6 
X0=concatenate((ones([shape(X1)[0],1]),zeros([shape(X1)[0],shape(X1)[1]-1])),axis=1) #just
 
int1=(X1-X0) @ betamat[0:k-1,:] #12 by 10000 
 
#replicate price coeff. draws 12 times in the row dimension 
lammat=tile(bprice,(12,1)) 
 
#generate 12 PPDs for total WTP 
WTPmat=int1/lammat 
 
# Get HPDI bounds 
####################################################### 
# short loop to get bounds for all cases 
kp=12 #number of attribute effects 
hpdimat=zeros([kp,2]) #first column for lower bound, second for upper 
 
for i in range(0,kp): 
    int1=WTPmat[i:i+1,:].T #needs to be column vector 
    [L,U]=khpdi(int1,0.05,1000) 
    hpdimat[i,0]=L 
    hpdimat[i,1]=U 
 
postmean = mean(WTPmat,axis=1) 
postmean.shape=(12,1) 
outmat=concatenate((hpdimat[:,0:1],postmean,hpdimat[:,1:2]),axis=1) 
 
# convert HPDI matrix to data frame for plotting 
############################################################## 
myframe = pd.DataFrame(outmat) 
 
myframe.index = pd.Index(["6,50,50", "6,75,50", "6,75,75", "6,100,50", "6,100,75", "6,100,
                         "12,50,50", "12,75,50", "12,75,75", "12,100,50", "12,100,75", "12
myframe.columns = ["lower bound", "post. mean", "upper bound"] 



  lower bound post. mean upper bound

6,50,50 12.317 17.359 22.772

6,75,50 18.089 23.002 28.297

6,75,75 22.041 27.788 33.255

6,100,50 32.274 37.523 43.114

6,100,75 36.498 42.309 48.486

6,100,100 32.068 37.344 42.952

12,50,50 15.057 19.640 24.544

12,75,50 20.227 25.283 30.028

12,75,75 25.374 30.069 34.804

12,100,50 34.814 39.804 44.653

12,100,75 39.825 44.590 49.588

12,100,100 34.854 39.625 44.877

Aggregate predictions
As a final step, let's derive the aggregate WTP per year for all 835,000 households that live in the 5-county
research area.

Let's do this for the least (6,50,50) desirable, and most (12,100,75) desirable forecast scenario. We will plot the
corresponding PPDs along with HPDI bounds.

 
#myframe = frame.style.format("{:,.3f}") #this sets all entries to 3 decimals 
 
# this is more slective: 
myframeNice = myframe.style.format({"lower bound": "{:,.3f}", 
                                "post. mean": "{:,.3f}", 
                                "upper bound": "{:,.3f}"}) 
display(myframeNice)  
#print(frame) #produces a raw-looking table, this is nicer 
# OK, same as Matlab's - just checking... 

In [87]: #predict agg WTP, in millions 
aggmat=0.835*concatenate((WTPmat[0:1,:],WTPmat[10:11,:]),axis=0) #2 by 10000 
 
# Get HPDI bounds 
####################################################### 
# short loop to get bounds for all cases 
kagg=2 #number of attribute effects 
hpdimat=zeros([kagg,2]) #first column for lower bound, second for upper 
 
for i in range(0,kagg): 
    int1=aggmat[i:i+1,:].T #needs to be column vector 
    [L,U]=khpdi(int1,0.05,1000) 
    hpdimat[i,0]=L 
    hpdimat[i,1]=U 
     

In [96]: # get kernel density estimates for each coefficient for smooth plotting 
####################################################################### 



yS1=aggmat[0:1,:] #low-level forecast 
yS2=aggmat[1:2,:] #high-level forecast 
 
L1=hpdimat[0,0] 
U1=hpdimat[0,1] 
 
L2=hpdimat[1,0] 
U2=hpdimat[1,1] 
 
x01 = linspace(-20,100,r2)[:,newaxis] 
kde1 = KD(kernel='gaussian', bandwidth=2).fit(yS1.T) #re-shape to column vector  
logdens1 = kde1.score_samples(x01) #needs 2-D array 
 
x02 = linspace(-20,100,r2)[:,newaxis] #np. newaxis (or short: newaxis in our case) turns l
kde2 = KD(kernel='gaussian', bandwidth=2).fit(yS2.T) #re-shape to column vector  
logdens2 = kde2.score_samples(x02) #needs 2-D array 

In [103… # Initiate Figure 
########################################################### 
fig,ax = plt.subplots(2,1,figsize=(16,8)) 
# 
# subplot (1,1): posteriors for "low-level forecast" 
#################################################### 
ax[0].plot(x01,exp(logdens1),'b-', lw=1, label='PPD') 
ax[0].set_xlim([0,60]) 
ax[0].axvline(x= L1,color='g') #add lower bound line 
ax[0].axvline(x= U1,color='g') #add upper bound line 
ax[0].set_xlabel('WTP ($ millions)') #the "r" is needed to render latex in graph labels an
ax[0].set_ylabel('density') 
ax[0].set_title('Posterior distributions of agg. WTP/year for (6,50,50) forecast with 95% 
#ax[0].legend() 
# 
# subplot (1,1): posteriors for "high-level forecast" 
######################################### 
ax[1].plot(x02,exp(logdens2),'b-', lw=1, label='PPD') 
ax[1].set_xlim([0,60]) 
ax[1].axvline(x= L2,color='g') #add lower bound line 
ax[1].axvline(x= U2,color='g') #add upper bound line 
ax[1].set_xlabel('WTP ($ millions)') #the "r" is needed to render latex in graph labels an
ax[1].set_ylabel('density') 
ax[1].set_title('Posterior distributions of agg. WTP/year for (12,100,75) forecast with 95
#ax[1].legend() 
# 
# adjust spacing between subplots 
plt.subplots_adjust(wspace=0.1, hspace=0.8) 
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