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Theoretical Model
Analogous to Contingent Valuation methods, Choice experiments also build on Random Utility Modeling (RUM),
in that the starting point of the theoretical model is a specification of an indirect utility function (IUF) for a
stipulated choice option. The main difference to CV is that the individual now faces three or more
simultaneous options to choose from at each choice occasion. Furthermore, CE's typically offer more than one
choice set to each survey respondent (at the risk, of course, of triggering ordering and sequencing effects).

Some upfront definitions:

Choice option or "alternative": A specific combiniation of attribute levels and price
Choice set: A bundle of 3 or more options to choose from (typically 3, with one being the Status Quo (SQ))
Choice block: A group of several choice sets to be considered sequentially by the respondent (typically 4-8
are given in a survey version)
Choice occasion: A specific choice set within the choice block

Formally, let the Indirect Utility Function (IUF) for person , choice occasion , and alternative  be given as:

where vector  comprises the underlying attributes of a specific choice option,  denotes (typically annual)
income,  is the price or "bid" associated with the choice option, and  captures all other components that
affect utility, but are not visible to the analyst. The error term in the basic RUM model is stipulated to follow a
"Type-I Extreme Value (EV)" distribution with zero mean and unity scale.
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As for the CV case,  for the status quo option. Typically, the SQ option comprises the same attribute set
as the policy options, but at different levels that remain unchanged over individuals. In some cases, as in the Red
Tide example we'll study in some detail, there are no matching SQ attributes that make sense, in which case SQ
utility is simply given as .

We could now again divide by the marginal utility of income,  to convert the model to "WTP-space." However,
in this case there are no compelling reasons for this, such as econometric efficiency gains. We thus remain in
"utility-space."

Respondent  will choose alternative  if it provides larger utility than all other options, that is:

where  is a binary indicator that takes the value of 1 if  chooses  on the  occasion, and a value of zero
otherwise. Note that this does not simply break into independent products of binary decisions, since the error
term of the winning utility becomes part of the differenced error term of all utility differences, and thus links the
entire system of differenced utilities.

Instead, under the maintained distributional assumptions of the error term in ( ) the probability of  selecting
option  on occasion  can be conveniently expressed as:

This is the famous "Conditional Logit" (CL) form derived my nobel laureat Daniel McFadden in what must be
one of the most highly cited papers in all of economics, despite its rather obscure appearance as a chapter in an
edited volume (McFadden, 1974). A further distinction of CL specifications is made based on the nature of the
given alternatives. Specifically, choice options in a typical CE do not represent existing real-world alternatives
such as transportation ("bus," "car," "bike,") or food choices ("beef," "pork," "chicken"), but rather hypothetical
mixes of attributes that vary in composition across alternatives and individuals. As such, the CE case constitutes
what is generally referred to as an "unlabeled" choice experiment (e.g. Holmes et al., 2017}.

An important econometric implication of an unlabeled experiment is that all choice alternatives share the same
set of coefficients, as is evident from ( ).

As is also evident from ( ), we collect attribute vector  and bid  into a single data vector , and
corresponding coefficients into single coefficient vector , for ease of notation. As shown in ( ) we enter price
as a positive term and envision the marginal utility of income  entering the model with a negative sign. This is
purely based on the analyst's preferences and can be changed, as long as the interpretation remains clear.

As a final note, in the econometric model  will usually include a constant term, but only for the SQ
alternative. This coefficient thus captures unobservable elements that may influence respondents' decison to
vote for or against the status quo.

Linear and nonlinear attribute space

Consider a single attribute, say  that, in reality, represents a continuous variable. As is typical in most CEs, this
attribute will have no more than 3-5 pre-set levels in the different choice menus. For example, in our red tide
forecasting application, the attribute "forecast accuracy" (theoretically continuous between 0 and 100) had set
levels of 50%, 75% and 100%.
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The analyst now has the choice of estimating a single coefficient  for this attribute, essentially forcing it to
have a linear effect on WTP. Continuing with our example, this would imply that a step from 50-75% accuracy
increases WTP by the same amount as a step from 75%-100%.

However, this constraint is not necessary from an econometric perspective, and likely violated in practice.
Instead, I recommend to always break attributes like that into its individual levels and estimate a separate
parameter for each level (minus the omitted baseline level). In our application, we included a separate binary
indicator for "accuracy=75%," and a second one for "accuracy=100%," and the estimates emerged as anything
but similar, as you will see in the application module.

This step-wise treatment of (essentially) continuous attributes is often referred to as the non-linear model.

WTP predictions

For the Conditional Logit model with linear IUF as given in ( ), the marginal WTP for a 1-unit change in a
given attribute can be obtained as the simple ratio of the attribute's coefficient over the MUI, i.e. as .

In contrast, WTP (Compensating surplus), labeled as , for an entire bundle of attribute settings, say , is
obtained as usual by equating indirect utility for the SQ settings  at full income  with indirect utility
associated with the policy bundle and reduced income . This produces the following expression:

If there are no specific SQ attribute settings, but only a SQ constant, WTP can then be instead derived as:

where we have separated the full coefficient vector  into a sub-vector  that corresponds to policy attributes,
and the SQ coefficient .

Econometric model
Likelihood function
The sample likelihood for  independent individuals, each facing  independent choice occasions
involving  alternatives, is given by

Taking the product over all individuals and choice occasions naturally implies that each occasion was truly
treated as independent from all others, as instructed in the survey. We can test this assumption by comparing
results from a "first-choice-only" model to the full-sample model, as you will do in PS 3.

Priors, posterior, and data augmentation
Adding the typical multivariate normal prior for , as we did for all previous models, we obtain the following
joint posterior kernel:
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This expression does not have a well-understood statistical form, nor can it be broken into conditionals to set up
a standard Gibbs Sampler. This is a typical situation where a Metropolis-Hastings (MH) approach can be helpful.

The Metropolis-Hastings algorithm

In essence, the MH algorithm is used to draw from an unknown distribution. This unknown "target distribution"
can be the full posterior (as in our current case), or a conditional posterior. Either way, the general methodology
is the same.

Let’s assume the unknown posterior for some parameter  (scalar or vector) is generically given by

where  represents data  and potentially other model parameter. If , then we are aiming to draw from
the full posterior. If  contains other parameters, in addition to , we are drawing from a conditional. I will
continue with the more general case where  can include both - it makes no difference for what follows.

We generally do know the mathematical form of the posterior kernel  (even though
we don't kow its statistical "family"). The unknown element is the normalizing constant . Equation ( ) is
an example of .

The rationale of the MH algorithm is to use , plus a candidate-generating density (CGD), often also
referred to as proposal density  to obtain draws from the unknown . Note that  can also be
a function of the data and / or other prameters in addition to .

Suppose that the most recent draw of  in the GS (which will initially be the starting draw) is . Now obtain a
new "candidate draw" of , call it , from . The new draw of  is then accepted with probability

since the normalizing constant  cancels out in the ratio. We usually work with logs:

In practice this is implemented by comparing the  value to a random uniform [0,1] draw (or, equivalently, 
to the log of a uniform draw). If  exceeds the random value, the new draw  is accepted, otherwise  remains
the most current draw. As discussed in Gelman et al (Ch. 12) , Koop (Ch. 5) and KPT, Ch. 11, after a sufficient
number of "burn-ins" the sequence of draws of  will converge to the desired underlying posterior density.

Also note that the generic GS is a special case of the MH with  such that the
acceptance probability is always one, i.e. every new draw of  is accepted by default.

MH for the Conditional Logit model
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There are many possible proposal densities for the MH approach. Here we will use one that produces draws that
are highly efficient, i.e. not highly correlated, as is always desirable in Bayesian estimation. It is a type of
"Independence Chain" (IC) MH, where the current draw of  is not a direct moment (e.g. mean) of the proposal
function. This lessens autocorrelation in the chain of draws.

The specific IC-MH version we will use in this application was proposed by Rossi et al. (2005) for the Conditional
Logit model, though it is applicable to a wide range of other specifications. It works as follows:

1) At each iteration of the posterior sampler find the mode of the posterior kernel , i.e. use a short
Maximum Likelihood (MLE) routine to find the  that maximizes this function. Let's call it . Furthermore, let the
Hessian (matrix of second derivatives) coming out of this optimization be labeled .The MLE step can be
implemented with analytical gradient and Hessian, and is thus both fast and precise. Details on these MLE
components are given in Moeltner et al. (2021).

2) Draw a candidate  from , where  is the multivariate t-distribution with mean 

, scale matrix , and degrees of freedom . The tuning scalar  and degress of freedom parameter 
 are chosen at the onset. We will come back to these shortly.

3) The new draw is accepted over the old draw  with probability:

or, in log form:

where  is given in ( ).

What is a desirable acceptance rate? For the GS, every draw is accepted by default, as noted above. For a MH
with a (typically) high degree of autocorrelation (e.g. when the current draw is used as the mean of the CGD),
accepting too many draws would imply being "stuck" in one corner of the posterior, without enough "jumping
around." Accepting too little will equally imply being stuck at a single point for long stretches of draws. In those
cases, one typicaly aims for acceptance rates of 0.25 -0.45.

However, for the IC-MH, where draws are relatively more independent, we would like to accept a high
proportion, say in the 70-80% range. This is accomplished by setting tuners  and  accordingly in a series of
trial runs with, say, 500-1000 iterations.

Typically, the acceptance rate AR (= proportion of accepted draws out of the set of keeper draws) is reported in
the final output along with the posterior results for .

After obtaining these draws from the posterior sampler, inference can proceed as usual by inspecting the
posterior distributions of individual coefficients, computing HPDI bounds, and generating posterior predictive
distibutions for WTP scenarios.
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