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Introduction

We have already seen that the Bayesian estimation framework allows for the pair-wise compar-
ison of different models, even non-nested ones, via the computation of marginal likelihoods and
Bayes Factors.

This module deals with situations where a whole array of candidate models must be consid-
ered, evaluated, and compared. In theory, one could estimate each model separately, compute
the marginal likelihood for each case, and derive individual model probabilities as the ratio of the
model-specific marginal likelihood (or the product of marginal likelihood and model prior) to the
sum of marginal likelihoods over all models.

Specifically, denoting p (y|Mm) as the marginal likelihood for model m, p (Mm) the model prior,
and the complete model space as M = {M1,M2, . . . ,MM}, individual model probabilities can be
derived as

p (Mm|y) =
p (y|Mm) p (Mm)∑M
j=1 p (y|Mj) p (Mj)

(1)

If model priors are the same for all models, this further simplifies to

p (Mm|y) =
p (y|Mm)∑M
j=1 p (y|Mj)

(2)
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A model-averaged posterior distribution for parameters θ can then be obtained via

p (θ|y) =

M∑
m=1

p (θ|y,Mm) p (Mm|y) (3)

In practice (i.e. in absence of an analytical solution to this expression), this is implemented by first
obtaining R draws of p (θ|y,Mm) for each model, and then drawing from these model-specific pos-
teriors with relative frequency dictated by the computed model weights. All subsequent inference,
including posterior predictive densities, are then based on these model-weighted, or model-averaged
draws.

While this approach is conceptually straightforward, its implementation becomes quickly infeasi-
ble with increasing model space. Therefore, Bayesians have developed model-search methods that,
for specific applications, can “travel” quickly through model space and identify the most promising
specifications. In most cases, the model search component simply becomes an extra step in a Gibbs
Sampler.

In this module we will discuss the two most common approaches to model search when the task
at hand is to identify “meaningful” explanatory variables in a regression model: Stochastic Search
Variable Selection (SSVS ) (George and McCulloch, 1993), and Markov-Chain Monte-Carlo Model
Composition (MC3) (Madigan and York, 1995).

Stochastic Search Variable Selection

The SSVS algorithm has the following salient features:

(1) Variable inclusion probabilities are directly modeled via a mixture prior for each coefficient
(2) Implementation proceeds via a standard Gibbs Sampler without MH steps
(3) At each iteration, the full model (with all possible variables) is evaluated
(4) Irrelevant variables will end up with a coefficient that has both posterior mean and variance

close to zero
(5) At each iteration, the algorithm captures if a given coefficient was deemed “important” or

”irrelevant”
(6) This information can then be used to compute posterior inclusion probabilities for each

coefficient and posterior model probabilities
(7) The SSVS algorithm does not lend itself to a direct derivation of model-averaged posterior

distributions.

Consider a standard linear regression model with an intercept α and a potentially large
number of slope coefficients βj , j = 1 . . . k − 1. The sample likelihood is given as:

p (y|θ,X) = (2π)−n/2
(
σ2
)−n/2

exp

(
− 1

2σ2
(y − Zθ)′ (y − Zθ)

)
, where

Z =
[
i X

]
θ =

[
α β1 β2 . . . βk−1

]′ (4)
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Assume that economic theory provides little or no guidance as to the inclusion or exclusion
of the variables in X. That is, the total number of possible models, each distinguished by
a different combination of regressors, is 2k−1. Even with just a “moderate” number of can-
didates, this model space quickly explodes and makes it infeasible to evaluate every single
model.

The SSVS algorithm tackles this problem via a mixture prior for each βj . It assigns a
point-mass prior probability p0 that βj comes from a healthy normal density with mean zero
and “large” variance c2 ∗ t2. With probability 1− p0, the prior density for βj is “virtually
degenerate”, i.e. a normal density with mean zero and variance t2, where t2 is also close to
zero. Thus:

p (βj) = p0φ
(
0, c2 ∗ t2

)
+ (1− p0)φ

(
0, t2

)
(5)

where φ denotes the normal pdf. In theory, the variance “tuners” c2 and t2 could be spe-
cific to each coefficient, perhaps based on “thresholds of practical significance” (George and
McCulloch, 1997). For simplicity, we assign the same values of c2 and t2 to all coefficients.
The larger the difference in magnitude between c and t, the more sharply the algorithm
will be able to discriminate between relevant and irrelevant variables. However, George and
McCulloch (1993) and George and McCulloch (1997) recommend against a variance ratio
of higher than 10,000, and a value of t “too close to zero” to avoid convergence problems
in the sampler.

The model is augmented with the introduction of indicator vector γ =
[
γ1 γ2 . . . γk−1

]′
,

where each element is a binary 0 / 1 indicator, with “1” signaling that the corresponding
βj comes from the “healthy” prior density. This augmentation facilitates model implemen-
tation and allows to capture inclusion counts for each coefficient as by-product of the Gibbs
Sampler.

Thus, we can re-express the prior of βj with the following hierarchical structure:

p (βj |γj) = γjφ
(
0, c2 ∗ t2

)
+ (1− γj)φ

(
0, t2

)
,

γj ∼ Bin (p0, 1)
(6)

where Bin (p, 1) indicates the Binomial distribution with parameter p0 and a single trial
(essentially a Bernoulli density). Choosing a normal prior for the intercept, and the standard
inverse-gamma prior for the variance of the regression error with shape ν0 and scale τ0 yields
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the following augmented joint posterior kernel:

p
(
θ, σ2,γ|y,Z

)
∝ p (α) p (β|γ) p (γ) p

(
σ2
)
p
(
y|θ, σ2,Z

)
∝

exp

(
− 1

2Vα
(α− µα)2

)
∗

k−1∏
j=1

{
γjexp

(
− 1

2c2t2
(
βj − µβj

)2)
+ (1− γj) exp

(
− 1

2t2
(
βj − µβj

)2)} ∗
k−1∏
j=1

p
γj
0 (1− p0)(1−γj) ∗

(
σ2
)−n−2ν0−2

2 exp

(
− 1

σ2
(τ0)

)
∗

exp
(
− 1

2σ2 (y − Zθ)′ (y − Zθ)
)

(7)

Conditional on γ, the intercept α and the coefficient vector β can be drawn jointly as vector
θ if we collect their variances into a single matrix V0, given as:

V0 = diag
[
Vα V1 V2 . . . Vk−1

]
, where

Vj = γjc
2 ∗ t2 + (1− γj) t2

(8)

This then leads to the standard Gibbs Sampler for the linear regression model with two
important modifications: (i) γ is drawn in a third step of the sampler, and (ii) the prior
variance V0 is adjusted accordingly at every iteration. Specifically, we have:

θ|σ2,γ,y,Z ∼ n (µ1,V1) , with

V1 =
(
V−10 + 1

σ2Z
′Z
)−1

, and

µ1 = V1 ∗
(
V−10 µ0 + 1

σ2Z
′y
) (9)

where V0 is a function of γ, as shown in (8). Furthermore:

σ2|θ,y,Z ∼ ig (ν1, τ1) , with

ν1 =
2ν0 + n

2
, and

τ1 = τ0 + 1
2 (y − Zθ)′ (y − Zθ)

(10)

The third step of the Gibbs Sampler is the core of the SSVS engine: it updates the indicator
vector γ, which, in turn, feeds into an updated prior variance V0. Formally, the conditional
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posterior kernel for γj is given as

p (γj |βj) ∝

p
γj
0 (1− p0)(1−γj) ∗ γjφ

(
0, c2 ∗ t2

)
+ (1− γj)φ

(
0, t2

) (11)

Draws can be obtained via the following strategy: First, we update the probability that
a given γj takes a value of 1, i.e that the associated βj comes from the “healthy” normal
density:

p1,j = pr (γj = 1|βj) =
pr (γj = 1, βj)

p (βj)
=

p (βj |γj = 1) pr (γj = 1)

p (βj)
=

p0 ∗ φ
(
βj ; 0, c2t2

)
p0 ∗ φ (βj ; 0, c2t2) + (1− p0)φ (βj ; 0, t2)

(12)

We then draw a random uniform uj and compare it to p1,j . We set γj = 1 if p1,j > uj , and
to zero otherwise. Formally, this step can be expressed as

γj |β ∼ Bin (p1,j , 1) (13)

with p1,j given in (12).

Matlab scripts mod8 SSVS data, mod8 SSVS and function gs SSVS show the implemen-
tation of this approach. The derivation of posterior inclusion probabilities and posterior
model probabilities is illustrated in script mod8 SSVS modProb.
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Markov-Chain Monte Carlo Model Composition (MC3)

This is an alternative approach to model search and selection that is based on comparing models
with different parameter space. It has the following salient features:

(1) Models are defined as different combinations of included variables.
(2) Each model receives its own model prior.
(3) Implementation proceeds via a standard Gibbs Sampler with an MH step for model selection
(4) At each iteration, a candidate model is drawn from the neighborhood of the current model.

It is accepted or rejected with a specific probability (as is the standard case in a MH
algorithm).

(5) The algorithm is designed to “visit” models with many relevant variables more often.
(6) Posterior model probabilities can be computed empirically and analytically. The resulting

comparison is used as one of the diagnostic tools to assess convergence.
(7) Model-averaged results can be obtained directly from the output of the Gibbs Sampler.

As before, the constant term will be included in every model. This poses a bit of a problem as
it is difficult to assign a prior to it without using the data. For example, the algorithm may choose
a model that has no explanatory variables. In that case the intercept, call it α, becomes the prior
expectation of the dependent variable. What should we use for that value?

As a result, two preparatory steps are taken. First, the intercept is given an improper (= not
integrating to one) prior, i.e. p (α) ∝ 1 (14)

However, this would break the conjugacy of the prior for the remaining coefficients β and the
error variance σ2, which is needed to make the MH step work. This can be overcome via the
second preparatory intervention, de-meaning the regressors (= subtracting the mean from all of
the candidate explanatory variables). This then implies that the “variable” associated with the
intercept, i.e. the column of ones, is orthogonal to the remaining regressor matrix, i.e.

i′X = 0 (15)

Note that de-meaning does not change the interpretation of the slope coefficients β.

Letting θ =
[
α β′

]′
and Z =

[
i X

]
, we can now write

(y − Zθ)′ (y − Zθ) = (y − iα−Xβ)′ (y − iα−Xβ) =

(y −Xβ)′ (y −Xβ)− 2αi′y + 2αi′Xβ + i′iα2 =

(y −Xβ)′ (y −Xβ)− 2αi′y + i′iα2

(16)

The second-to-last term in the second line drops out due to the imposed orthogonality via de-
meaning. This is crucial in de-linking the posterior of the intercept from the rest of the model.

We follow standard convention (see e.g. Fernández et al. (2001a)) and choose an improper prior
to the error variance and a conjugate g-prior for the k− 1 by 1 coefficient vector β. Such a g-prior
greatly reduces the number of parameters that need to be determined by the researcher a priori,
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facilitates the interpretation of posterior results, and assures speedy model evaluation as part of
the search process.1 Thus, we have

p
(
σ2
)
∝ 1

σ2

p
(
β|σ2

)
= n

(
µ0, gσ

2
(
X′X

)−1) (17)

where n denotes the k − 1-variate normal density. We set µ0 = 0.

Let γ be a k − 1 by 1 vector of binary indicators that signal if a given covariate xj is included
(γj = 1) or excluded (γj = 0) for a given model. Thus, we can express conditionality on a specific
model, i.e. a specific mix of regressors, as conditionality on γ.

Building on the results of the conjugate normal regression model (and letting V0 = g (X′X)−1),
the conditional posterior for β is again a “well-behaved” normal density, i.e

β|σ2, γ,y,X ∼ n (µ1,V1) with

V1 = σ2
g

1 + g

(
X′X

)−1
µ1 =

g

1 + g

(
X′X

)−1
X′y

(18)

Similarly, the conditional posterior distribution of α can be immediately derived as

p
(
α|σ2,y

)
∝

exp

(
− 1

2σ2

(
nα2 − 2α

n∑
i=1

yi

))
=

exp

(
−1

2

(
σ2

n

)−1
α2 + α

(
σ2

n

)−1
ȳ

) (19)

We recognize this as the kernel of the normal density with mean ȳ and variance σ2

n .

1Specifically, the conjugate g-prior, along with our other prior choices, assures an analytical expression for the the
marginal likelihood. This, in turn, is an integral component of the model selection step of the posterior simulator, as
discussed below in more detail.
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The marginal posterior for the error variance follows again an inverse-gamma distribution. Specif-
ically,

σ2|γ,y,X ∼ ig (ν1, τ1) with

ν1 =
n− 1

2

τ1 = 1
2

(
g

1 + g
y′MXy +

1

1 + g
(y − iȳ)′ (y − iȳ)− ng

1 + g
ȳ2
)

where

MX = I−X
(
X′X

)−1
X′

(20)

The marginal, model-conditioned likelihood is proportional to the following expression:

p (y|γ,X) ∝
(

1

1 + g

)k/2
τ−ν11 =(

1

1 + g

)k/2(
1
2

(
g

1 + g
yMXy +

1

1 + g
(y − iȳ)′ (y − iȳ)− ng

1 + g
ȳ2
))−(n−1

2 )
(21)

where k is the dimension of β under model γ. The key step in the MC3 algorithm is the model
selection, implemented through draws of γ. This requires a Metropolis-Hastings (MH) step with
acceptance probability

a = min

(
1,
q (γ0|γc) p (y|γc,X) p (γc)

q (γc|γ0) p (y|γ0,X) p (γ0)

)
(22)

where, as before, “0” denotes the old or current model, and “c” denotes the new or candidate
model. The function q

(
γi|γj

)
is the candidate generating density for model γi, given model γj .

In our case, this boils down to the discrete probability of drawing model γi from the neigh-
borhood of current model γj . Thus, the intuition for this proposal is similar to that behind the
random-walk MH algorithm encountered in the previous chapter. In our simple case of regressor
selection, there are k + 1 candidate models (including the current one) at every iteration. This
implies that q

(
γi|γj

)
= 1/ (k + 1) for any i, j, and the q (.) terms drop out of the ratio in (22).

If, in addition, the model priors p (γi) are equal for all models, the MH acceptance formula
reduces to a simple Bayes Factor of model c versus model 0:

a = min

(
1,
p (y|γc,X)

p (y|γ0,X)

)
(23)

Matlab script mod8 MC3 with function gs MC3 illustrate this procedure. Since g becomes the only
tuning parameter in the algorithm, care must be taken in its choice. Fernández et al. (2001a)
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discuss several options. They find that setting g = n performs well in most general settings. We
follow this suggestion in our code.

The programming code includes two other important features: (i) after each draw of γ, the
regressor matrix must be adjusted accordingly (add or delete columns of X), and (ii) all collected
draws of β should be (k − 1)x1, with the actually drawn β’s placed in the correct positions and
zeros in all other positions. The resulting sequence of draws will then reflect how often a given
coefficient was set to zero (i.e. how often a given regressor was omitted) by the algorithm.

Conveniently, and in contrast to the SSVS method, the posterior draws of model parameters are
already “model-averaged”, and model-averaged inference can be drawn by evaluating the entire set
of posterior draws as usual.

The draws of γ can be used to (i) examine the posterior inclusion probabilities for each coefficient,
(ii) identify the most frequently visited models, and (iii) perform a convergence check as suggested
by Fernández et al. (2001a) by comparing empirical model probabilities to analytical probabilities
(based on the known form of the marginal likelihood). Specifically, the correlation coefficient be-
tween these to sets of probabilities for, say, the top 1000 visited models should be close to 1 if the
algorithm has converged. Naturally, our parameter-specific convergence tools (IEF, CD) still apply.

Matlab script mod8 MC3 modProb shows the derivation of empirical model probabilities. Script
mod8 MC3 convTest shows the derivation of analytical model probabilities and the implementation
of this convergence check.

Matlab scripts mod8 MC3 growth, mod8 MC3 growth modProb, and mod8 MC3 growth convTest

apply this framework to the macroeconomic growth regression discussed in Fernández et al. (2001b).
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