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Abstract

The adverse economic impacts of harmful algal blooms can be mitigated via tailored
forecasting methods. Adequate provision of these services requires knowledge of the
losses avoided, or, in other words, the economic benefits they generate. The latter
can be difficult to measure for broader population segments, especially if forecasting
services or features do not yet exist. We illustrate how Stated Preference tools and
Choice Experiments, commonly used for the economic valuation of health and ecosystem
services, are well-suited for this case. Using as example forecasts of respiratory irritation
levels associated with airborne toxins caused by Florida red tide, we show that 24-hour
predictions of spatially and temporally refined air quality conditions are valued highly
by the underlying population. This reflects the numerous channels and magnitude
of red tide impacts on locals’ life and activities, which are also highlighted by our
study. Our value estimates constitute an important input to determine the societal net
benefits of implementing an improved forecasting system along the lines suggested in our
experiment. Our approach is broadly applicable to any type of air quality impediment
with risk of human exposure.

Introduction

Harmful algal blooms (HABs) can cause serious economic damages in the U.S. and around

the world by negatively impacting commercial and recreational fisheries, aquaculture, seafood

*Corresponding author: 208 Hutcheson Hall, Blacksburg, VA 24061; phone: (540) 231-8249.
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markets, tourism, and public health (Hoagland et al., 2002; Adams et al., 2018; Jin et al.,

2020; Plaas and Paerl, 2021). As discussed in Jin and Hoagland (2008) and Jin et al. (2020),

predicting the occurrence and intensity of HABs can alleviate these costs, by allowing de-

cision makers to adjust economic activities to mitigate impacts. Thus, HAB predictions

carry economic value, and this value, in turn, needs to be understood by private and public

investors for the efficient allocation of funds to develop and refine HAB forecasting systems

(Jin et al., 2020).

Jin and Hoagland (2008) present a conceptual framework of deriving the value of HAB

predictions in terms of re-optimized harvesting decisions, and apply it to the New England

shellfish sector. However, their model requires assumptions on how exactly HABs affect

decision makers, and what mitigating actions they take in reaction to the forecast. While

this may be feasible for a specific, well-understood sector of the economy, it is a tall order

when contemplating forecast values to a broader residential population. This is especially

true when the envisioned forecast system does not yet exist, and / or the HAB under

consideration has the potential to affect locals via multiple channels, triggering a wide

range of mitigating actions.

In such case of non-existing or difficult-to-characterize markets, survey-based Stated

Preference (SP) methods constitute an attractive alternative to structural, market-based

models to value forecasts. In a nutshell, this approach elicits the monetary value of the

commodity or service under consideration (here: HAB forecasts) by building a hypothetical

market for the service, and capturing respondents “purchasing” decisions. This can be

accomplished without knowing every behavioral nuance that links people with the non-

market good under consideration (e.g. Brown, 2017; Freeman, 2003; Phaneuf and Requate,

2017). If properly implemented, following best practice in survey design and estimation,

SP methods have been shown to generate realistic estimates of individuals’ true value, or

“willingness-to-pay” (WTP) for such goods (Johnston et al., 2017).

We illustrate this approach within the context of HABs of Karenia brevis, commonly

referred to as “Red Tide” (RT), in southwest Florida. These blooms are known for causing

respiratory irritation and illness in humans via aerosolized toxins, among other environmen-
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tal impacts. Specifically, we elicit the economic value to residents of five southwest Florida

counties of a hypothetical RT air quality forecast that improves over existing information

systems, using an SP approach anchored in a state-of-the-art economic choice experiment

(CE). While there exists a considerable body of literature on the value of weather and cli-

mate forecasts to agriculture and other sectors (e.g. Adams et al., 1995; Johnson and Holt,

1997; Solow et al., 1998; Freebairn and Zillman, 2002; Lazo and Chestnut, 2002; Rollins

and Shaykewich, 2003), contributions that value air quality predictions, HAB-related or

otherwise, are less abundant.

We estimate the annual value of this improved forecasting system at $17-$45 per house-

hold, depending on stipulated spatial coverage and accuracy. This aggregates to approxi-

mately $14.5 -$37 million per year for the Five-County Region (5CR) at large. We believe

that these figures constitute a useful starting points to assess the potential net benefits to

the local population of more refined RT forecasts and information systems. At the same

time, the upper end of our estimates for fully accurate forecasts can be considered a (very

conservative) lower bound for the economic costs caused by RT air contamination via their

interference with human outdoor activities.

To our knowledge this work constitutes the first effort to quantify, in monetary terms,

societal benefits of forecasts for aerosolized ecotoxins, or, for that matter, any type of air

quality problem.1 In passing, our survey also reveals in more detail than provided by

existing studies the diversity and intensity of outdoor activities enjoyed by 5CR residents,

and the numerous ways in which past RT episodes have interfered with these endeavors and

triggered mitigating actions.

Red tide impacts and existing information sources

In recent years, blooms of RT have increased in frequency, intensity, and geographic spread

along the Florida Gulf Coast (FGC) (e.g. Alcock, 2007; Brand and Compton, 2007; Nieren-

1The only study we are aware of that focuses on the value of air quality forecasts is Garner and Thompson
(2012). However, their stylized loss-cost model requires as input an assumption of lost societal benefits, rather
than estimating them.
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berg et al., 2009; Fleming et al., 2011; Corcoran et al., 2013). Karenia brevis produces

powerful neurotoxins (“brevetoxins”) that can cause widespread mortality to fish, marine

mammals and sea birds, as well as respiratory irritation and illness in humans as RT cells

get broken up by wind and wave action and mixed into the ambient aerosol (Backer et al.,

2003; Fleming et al., 2011; Kirkpatrick et al., 2006, 2011). From October 2017 through

the winter of 2018/2019, the FGC experienced the most intense and longest RT bloom in

decades, at times stretching over 150 miles of coast line, and producing RT concentrations

in the tens of million cells per liter (Wei-Haas, 2018; National Ocean Service, 2019).2

Documented economic consequences of RT events include revenue losses to businesses

and tourism, public health costs, beach cleanup expenses, and direct welfare losses to resi-

dents and visitors via diminished recreational opportunities and interference with outdoor

activities (Larkin and Adams, 2007; Morgan et al., 2008; Hoagland et al., 2009; Morgan

et al., 2009, 2010, 2011). While scientific efforts are ongoing to curb RT blooms through

prevention and control methods, the predominant management strategy to date has been

mitigation, via early detection and avoidance of human contact (Alcock, 2007; Corcoran et

al.,2013). In part, this is achieved through online information free to the public on current

and expected RT cell counts and irritation levels. For example, Mote Marine Laboratory &

Aquarium (MML) in Sarasota, Florida, manages the Beach Conditions Reporting System

(BCRS), which provides twice-daily updates on current RT irritation levels at 37 beach

locations along the FGC (Nierenberg et al., 2009; Mote Marine Laboratory & Aquarium,

2020). These reports are based on self-experienced or observed frequency of coughing and

sneezing by trained beach sentinels, such as lifeguards. Similarly, the Florida Fish & Wildlife

Conservation Commission (FWC) maintains a web site that summarizes RT concentrations

from water samples, observed over the preceding two weeks. It also gives a link to detailed

reports on RT concentrations for a given sampling day and site, and offers a translation of

cell counts to potential respiratory irritation levels that may be experienced nearby (Florida

2In comparison Kirkpatrick et al. (2006) suggest a concentration of 100,000 cells per liter (cpl) as the
toxin level that affects human health. This level is also referred to as a “typical bloom concentration” in
Vargo et al. (2008). Concentrations of under 1,000 cpl are generally considered standard ambient levels of
Karenia brevis (Nierenberg et al., 2010).
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Fish and Wildlife Conservation Commission, 2020).

While the BCRS and FWC sites focus on past and current RT conditions, the National

Oceanic and Atmospheric Administration (NOAA) issues bi-weekly to weekly forecasts for

RT blooms via its Gulf of Mexico Harmful Algal Bloom Forecast (HABF) web site. The web

site provides a three to four day forecast of potential respiratory irritation for four target

regions, including Northwest and Southwest Florida, respectively. Within each region,

expected irritation levels are given for smaller sub-areas for each of the following three

days. In a similar vein, experimental RT respiratory forecasts are currently underway in

selected Gulf coast counties by combining Karenia brevis cell counts based on water samples

with wind forecasts produced by the National Weather Service to generate predictions of RT

irritation levels in three hour increments, up to a 24 hour forecast window (Gulf of Mexico

Coastal Ocean Observing System, 2020; National Centers for Coastal Ocean Science, 2020).

Rather than eliciting values for existing RT information and forecast systems, we pro-

pose a hypothetical, more advanced system that fills important shortcomings of existing

sources by better capturing the pronounced spatial and temporal variability of RT aerosol

concentrations (Nierenberg et al., 2009), and their ability to travel inland for considerable

distances (Kirkpatrick et al., 2010). Accordingly, the envisioned system features broader

spatial coverage that includes inland areas, and higher spatial and temporal resolution than

existing sources. These improvements are essential to allow users make informed and refined

day-to-day plans for outdoor-based activities.

Methods

Conceptual and econometric modeling

Our conceptual modeling framework is anchored in random utility maximization (RUM)

theory, which stipulates that individuals gain benefits (“utility”) from a given choice option

(here a specific forecast scenario), but that the components feeding into the underlying util-

ity function are only partially observed by the researcher. The RUM approach to economic

research was pioneered by McFadden (1974), and has since become one of the dominant
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theoretical foundations for economic valuation.3

Following this general approach, we let the indirect utility function (IUF) for person i,

choice occasion t, and forecast alternative j be given as:4

Uitj = z′itjθ + λ (mi − Pitj) + εitj , with

εitj ∼ EV (0, 1) ,

(1)

where vector zitj comprises forecast attributes, mi denotes annual income, Pitj is the price

or “bid” associated with the forecast scenario, and εitj captures all other components that

affect utility, but are not visible to the analyst. In essence, this IUF can be interpreted as

a reduced-form expression that succinctly captures all utility-enhancing underlying actions

that individual would be able to take to mitigate RT impacts, given then forecast features

zitj .

If the error component of this IUF is identically and independently distributed following

a Type-I Extreme Value (EV) distribution with zero mean and unity scale, as noted in the

second line of (1), the probability of i selecting option j on occasion t can be conveniently

expressed as:

prob (yitj = 1) =
exp

(
x′itjβ

)
∑J

j=1 exp
(
x′itjβ

) , where

xitj =

[
z′itj Pitj

]′
, and β =

[
θ′ −λ

]′
,

(2)

and yitj be a binary indicator that takes the value of 1 if i chooses j on the tth occasion,

and a value of zero otherwise.

The choice model characterized by equations (1) and (2) is generally referred to as

“Conditional Logit” (CL) in applied economics and related fields (e.g. McFadden, 1974;

Train, 2009; Greene, 2012). A further distinction of CL specifications is made based on

3For accessible introductions to RUM theory and applications see for example Freeman (2003), Train
(2009), and Phaneuf and Requate (2017).

4The term “indirect utility” refers to an envelope function that reflects maximized utility over all other
goods and services, subject to prices and a budget constraint. See for example Mas-Colell et al. (1995).
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the nature of the given alternatives. Specifically, our choice options do not represent ex-

isting real-world alternatives such as transportation (“bus,”“car,”“bike,”) or food choices

(“beef,” “pork,”“chicken”), but rather hypothetical mixes of forecast attributes that vary

in composition across alternatives and individuals. As such, our case constitutes what is

generally referred to as an “unlabeled” choice experiment (Henscher et al., 2005; Holmes

et al., 2017).5

Conditional Logit models can also differ via their specification of the “Status Quo” (SQ)

alternative, that is a constant “baseline” option given in all choice sets offered to the sample

at large. As discussed below in more detail, the inclusion of a SQ alternative is considered

“best practice” in choice modeling. It usually captures indirect utility related to some form

of non-participation or non-purchase, and is often modeled by setting the price term Pitj to

zero, and by either setting attribute vector zitj to fixed levels, or replacing it with a single

constant term. The latter strategy is more meaningful in our case, as there are no existing

forecasting systems for RT aerosol that fit into the mold of the attribute settings for the

new envisioned system. In consequence, the SQ indicator in our model succinctly captures

whatever a given respondent perceives as the relevant features of existing RT information

sources when deciding between alternatives.6

The sample likelihood for i = 1 . . . N independent individuals, each facing T independent

choice occasions involving J alternatives,7 is given by

p (y|β,X) =

N∏
i=1

T∏
t=1

J∏
j=1

 exp
(
x′itjβ

)
∑J

j=1 exp
(
x′itjβ

)
yitj

. (3)

5An important implication of an unlabeled choice setting is that the much cited “Independence of Irrele-
vant Alternatives” (IIA) concern of CL’s with labeled alternatives, which refers to the potential correlation
of choice probabilities across the J options via unobservable preferences, is less of a concern in our case
(Hausman and McFadden, 1984; Greene, 2012; Train, 2009; Holmes et al., 2017).

6This implies that for our application a significant SQ effect is a valid indication of the relative benefits or
disadvantages of existing RT information sources compared to the new system, as perceived by respondents.
This contrasts with many existing CL applications with explicit variable settings for the SQ alternative,
where the emergence of a significant SQ indicator is often considered a form of undesirable “resistance to
change” bias (Boxall et al., 2009; Meyerhoff and Liebe, 2009).

7Respondents were reminded in the survey instrument to treat each choice occasion as a free-standing,
independent event. In addition, we also estimate a model that is based on only the first choice set presented
to each individual, and thus free of potential sequencing effects and correlation via unobservables by design.
The output from this reduced-sample model essentially mirrors results flowing from the full model, as
discussed below.
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Traditionally, the model in (3) is estimated via Maximum Likelihood (MLE) using some

form of gradient or search algorithm to determine the optimal coefficient vector β∗ that

maximizes the probability of observing the combined choices of the sample at hand. We

opt instead for a Bayesian estimation framework for the the reasons of (i) non-dependence

on large-sample (“asymptotic”) theory, (ii) obtaining full finite-sample distributions for

each primary model parameter, and (iii) ease of deriving full distributions for predictive

constructs, such as the total value of a forecast with a specific combination of attribute

settings.8

Bayesian estimation requires the ex-ante choice of a prior distribution for coefficient

vector β. We follow standard practice and specify this density as a multivariate normal

with mean µ0 and variance-covariance matrix V0 (e.g. Rossi et al., 2005; Train and Sonnier,

2005; Daziano, 2013). This prior is them combined with the likelihood in (3) to form the joint

posterior distribution, the estimation target in Bayesian analysis. Dropping normalization

terms that are not needed for parameter estimation, the kernel of this posterior can then

be written as:

p (β|y,X) ∝ exp
(
−1

2 (β − µ0)
′V−10 (β − µ0)

) N∏
i=1

T∏
t=1

J∏
j=1

 exp
(
x′itjβ

)
∑J

j=1 exp
(
x′itjβ

)
yitj

(4)

Since the expression in (4) does not have a well-understood analytical form, Bayesian infer-

ence proceeds by taking draws from this posterior via a Metropolis-Hastings (MH) algorithm

based on an auxiliary “proposal function” (Hastings, 1970). Several different MH strategies

exist for the CL model. Based on results from initial runs with simulated and actual data

we opt for the strategy outlined in Rossi et al. (2005) and use a multivariate-t distribution

as proposal density with mean equal to the mode, and variance matrix based on the second

derivative of (4), respectively. This also allows for the introduction of two tuning parameters

to control sampling efficiency, a scalar for the variance matrix (τ) and degree-of-freedom

parameter ν. The details of this approach are given in a separate online appendix.

8Existing examples of Bayesian estimation of CL models include Rossi et al. (2005), Train and Sonnier
(2005), and Daziano (2013).
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Willingness-to-pay predictions

Formally, the value wi of a forecasting system with attribute settings zp to a given individual

is derived implicitly by equating indirect utility for the SQ at full income mi with indirect

utility associated with the forecast and reduced income mi − wi. In other words, wi is the

maximum amount the individual is willing to trade off for the improved system.9 Separating

the full coefficient vector β into a sub-vector βz that corresponds to actual forecasting

attributes, and the SQ coefficient βSQ, this “willingness-to-pay” (WTP) can then be derived

in straightforward fashion as:

wi|zp,β =
1

λ

(
z′pβz − βSQ

)
, (5)

In practice, draws from the full posterior predictive density (PPD) for this WTP measure

are conveniently obtained by evaluating (5) for all r = 1 . . . R draws of β flowing from

the original posterior sampler. This set of predictive draws, in turn, form the basis for

statistical inference. This procedure can then be repeated for other forecast settings, as

discussed below.

Survey design and implementation

Focus group sessions

Field research for this project was initiated via three focus group sessions in December 2019

and January 2020, held at the Mote Marine Laboratory & Aquarium (henceforth MML)

in Sarasota, Florida. Each session comprised nine participants who were recruited from

MML’s expansive list of volunteers and citizen scientists. Prospective participants had to

be at least 18 years old and year-round residents of the 5CR. Each session lasted 90 minutes,

and participants were compensated with $85 for their time. Refreshments and opportunities

for breaks were provide throughout each session. All focus group materials (recruitment

forms, informed consent, focus group protocols) were approved by Virginia Tech (VT)’s

9This maximum WTP to obtain an improved level of an environmental commodity or service is also
referred to as “Compensating Variation” (CV) in economic jargon (e.g. Freeman, 2003; Phaneuf and Requate,
2017).
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Institutional Review Board (IRB).

The primary aim of these sessions was to learn how recent episodes of RT blooms have

affected local residents, with special focus on air quality. Additionally, the sessions provided

a first opportunity to gauge the perceived usefulness of an improved air quality forecasting

system, prioritize the importance of forecast attributes, and collect initial information on

potential willingness to pay for the new system. Focus group moderation followed best

practices as outlined inter alia in Johnston et al. (1995) and Nyumba et al. (2017), such as

using non-technical language, letting the discussion flow as freely as possible, and probing

for participants’ experiences rather than opinions.

In sum, the focus group sessions illustrated clearly that RT air contamination causes

widespread and severe problems to the local population, including direct health effects and

impediments to activities of daily life, not necessarily limited to outdoor recreation. The

envisioned forecasting system was generally perceived as a very useful tool that would help

to “plan ahead.”

Refinement of forecasting system

Given focus group feedback, literature review, team discussions, and the features of existing

RT information services, we decided to cast the envisioned system as a 24-hour forecast,

with hourly updating, spatial resolution of one square mile, and coverage along the entire

5CR coastline with a band width of up to 12 miles. Following virtually all existing RT mon-

itoring systems, hourly forecasts would be issued in terms of the severity of irritation caused

by RT aerosol, from “none” to “high,” with intermediate levels of “low,” and “moderate,”

and corresponding color codes of white, yellow, orange, and red. Following MML’s Beach

Conditions Reporting System (BCRS), we consider a level of “low” as affecting primarily

people with chronic respiratory problems, a level of “moderate” as triggering mild symp-

toms, such as coughing, sneezing, and eye irritation among the majority of the exposed

public, and a level of “high” as producing severe respiratory symptoms (heavy coughing or

sneezing, severe eye irritation) for the majority of those exposed (Mote Marine Laboratory

& Aquarium, 2020). In terms of accessibility, we envision the new system as offered online
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via a designated web site, and as a cell phone application (“app”).

Figure 1 depicts the general idea of what users might see first upon accessing the system,

using as an example a 6-mile coverage band and the city of Sarasota. Each panel shows a

forecast at a different point in time. Each panel also features the one-mile grid of spatial

resolution, and the color-coded respiratory irritation levels that govern each square mile

at the indicated point in time. Users of the system would then be able to click on any

desired square to access the 24-hour by-the-hour forecast for a given location. An example

is given in figure 2 for the “St. Armands / Lido Beach” square within the Sarasota grid.

As is evident from the figure, forecasted hourly irritation is symbolized as a color-coded

horizontal band with hourly cells that span the entire 24-hour window, starting from the

most recent hourly update.

In sum, with these envisioned features, the new system would have much higher spa-

tial resolution and much more frequent updating than any of the existing RT information

sources. It would also exhibit much broader spatial coverage, even at its smallest band

width.10

Design of choice experiment

At the heart of the survey instrument lies the actual economic choice experiment (CE). This

elicitation tool is based on a sequence of choice sets presented to the respondent. Each set

offers several choice options (also referred to as “profiles,” or “alternatives”). Each option,

in turn is characterized by a set of attribute levels related to the resource or commodity to

be valued, plus a “price tag,” usually in form of increased taxes or utility bills. Observing

each respondent’s preferred option across sets then allows the analyst to estimate the dollar-

denominated marginal value of each attribute, as well as any desired bundle of attribute

settings, to the underlying population of interest.

In addition to the selection of attributes and levels as described above, the process of

CE design involves the combination of attribute settings to form a profile, the grouping of

10Specifically, the six-mile band comprises approximately 1,300 forecasting squares. This number is dou-
bled for the 12-mile band.
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profiles into choice sets, and the blocking of choice sets into manageable sequences that can

be presented to different sub-sets of survey respondents. Accessible descriptions of these

tasks and underlying techniques are given in Henscher et al. (2005), Johnson et al. (2007),

and Holmes et al. (2017).

The number of attributes and levels is typically chosen to adequately characterize the

resource or commodity under consideration while at the same time acknowledging the cog-

nitive limitations of respondents (see e.g. De Shazo and Fermo, 2002; Swait and Adamowicz,

2001; Boxall et al., 2009). With that in mind, we settled for three attributes that capture

the most salient features of the envisioned system: (i) The width of spatial coverage along

the coastline, the degree of accuracy of the forecast for the first 12 hours, and the degree

of accuracy for the second set of 12 hours, counting from the most recent forecast update

available to the user. We express spatial coverage in terms of a band of either six or 12

mile width, stretching along the entire five-county coastline. Figure 3 provides a bird’s eye

view of the spatial bands, while Figure 4 depicts more localized examples of these bands

for selected coastal population hubs. Both figures were also shown to respondents in the

final survey questionnaire. As can be seen from 3, both bands cover all existing sampling

locations of MML’s BCRS, with the 12-mile version extending both further inland and into

the Gulf.

Accuracy, in turn, is quantified as the percentage of correctly forecasted degrees of

irritation over a 12 hour period, with precision levels set at 50%, 75%, and 100% for both

the first and second 12-hour window. An example of the notion of accuracy for the first 12

forecasted hours, also depicted in the final questionnaire, is given in figure 5. The bottom

horizontal color bar gives the (hypothesized) fully accurate forecast, while the bars stacked

above depict forecasts with three inaccurate cells (=75% accuracy) and six inaccurate cells

(=50% accuracy), respectively. For simplicity, respondents were instructed to assume that

false forecasts would deviate from the truth by no more than one irritation level, in either

direction.

The set of three forecast attributes is complemented by a price variable, which we

specify at four uniformly spaced levels of $5, $15, $25, and $35. These bids were informed
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by fees suggested by focus group participants for various stylized sample forecast systems,

by WTP estimates produced by a similar CE study on weather forecast improvements

(Lazo and Chestnut, 2002), and by existing annual subscription fees charged for weather-

related online services.11 These four bid values performed well in pretesting, and were thus

retained for final survey implementation. Table 1 provides a summary of all CE attributes

and corresponding levels.

The full factorial of these attribute settings produces an initial set of 72 choice pro-

files (also referred to as “options” or “alternatives”), each with a unique combination of

attribute levels. Eliminating unrealistic profiles that show higher accuracy for the second

set of 12 hour-forecast than for the first set leaves a starting set of 48 unique profiles. These

alternatives were then grouped into choice sets of two actual options, plus the SQ option of

existing information sources at a cost of $0. This setup of “two + SQ” is by far the most

common template for choice experiments within the realm of environmental economics, bal-

ancing a manageable cognitive burden on the respondent with adequate statistical efficiency

in estimation (e.g. Ferrini and Scarpa, 2007).12

The final number of choice sets to be used in the actual survey is driven by two con-

siderations: The number of sets to be shown to a given respondents, and the minimum

number of observations the analyst wishes to collect per set. Given expected sample sizes

and model parameters to be estimated, we settled for a total of 20 choice sets administered

in five different blocks of four sets each. That is, each respondent was randomly assigned to

a given block, and presented with four corresponding choice sets. This assures the identifi-

cation of all model parameters, while keeping cognitive requirements and survey completion

time at manageable levels. Blocks of four sets are, again, a common choice in environmental

economic research (Ferrini and Scarpa, 2007).

From a statistical perspective, the optimal grouping of alternatives into the 20 choice sets

11Examples include cell phone applications such as “Weather Radar Live” (Weather or Not Apps, 2020),
“Weather Live” (Apalon Apps, 2020), and “Storm Shield” (E.W. Scripps Company, 2020), all of which
charge approximately $20-$25 per year.

12Inclusion of the SQ option is also an econometric requirement given our random utility setup described
above, which rests on differences across utilities, including baseline conditions. It is also consistent with best
practices in stated preference research as discussed in Johnston et al. (2017)
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follows a “D-optimality” criterion that is based on an optimization algorithm that iteratively

and repeatedly groups options into choice sets until the determinant of the covariance matrix

of estimated parameters (under specific modeling assumption) is minimized (Johnson et al.,

2007; Ferrini and Scarpa, 2007; Rose and Bliemer, 2009; Holmes et al., 2017).13 During

this process, we impose the additional restriction that a choice set cannot contain option

pairs such that one option perfectly dominates the other, i.e. by offering wider coverage

and higher accuracy at an equal or lower price tag. Figure 6 shows an example of a choice

set, in the same format as shown to survey respondents.

Survey instrument

The design of the survey instrument was informed by the focus group sessions described

above and a pretest (see below). The questionnaire is grouped into four main sections. The

first section provides detailed background information on RT blooms along the Southern

Florida Gulf Coast. It then asks respondents how and to what extent they have been

affected by poor air quality associated with RT across a broad set of outdoor activities, and

what mitigating actions, if any, they have taken in the past.

The second section summarizes existing public information systems for RT cell counts

and irritation levels for the region, and elicits familiarity with these (free-of-charge) ser-

vices. This is followed by an introduction of the envisioned new forecasting system, and

preparatory information and primer questions for the actual choice experiment.

The third section presents the four choice sets as described above and collects the four

corresponding choice decisions. It also features two important follow-up questions. The

first, offered to those who choose the SQ option on all four occasions, identifies problematic

responses that are not based on considerations of benefits and costs, and / or indicate

disbelief of provided factual information. These “protest votes” can bias estimation of

economic values, and are generally excluded from final model estimation (Meyerhoff et al.,

2012; Johnston et al., 2017). In our application, protest responses were flagged as those that

13We use stata’s dcreate function to accomplish this task, as well as for the grouping of choice sets into
blocks.
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reflect opinions that the new system ought to be covered by existing fees and taxes, that it

will not be scientifically feasible, and / or that it would channel resources away from other

efforts to combat RT (despite having been reassured to the contrary earlier in the survey).

The second follow-up question asked respondents who chose an actual forecast option on at

least one occasion for their primary motivation(s) of doing so.

The final questionnaire section collects standard demographic information, such as lo-

cation of residence by ZIP code, household size, education level, and income category.14.

Throughout the development of the survey instrument care was taken to follow “best

practices” in stated preference research, as mapped out in Johnston et al. (2017). These

interventions are designed to align the choice experiment as closely as possible with a real-

world voting context to avoid biased responses that can arise due to the hypothetical nature

of the commodity or service in question, or via a number of other undesirable channels

that are often related to poor or incomplete survey design (Mitchell and Carson, 1989;

Holmes et al., 2017; Johnston et al., 2017). For example, we presented respondents with

a realistic and binding decision rule, that is with a linkage between their vote and the

potential implementation of the new forecasting system. Specifically, we explained that

(i) their responses would help public officials and organizations understand the type of

forecasting system they would support in an actual public vote, (ii) that survey results

would be shared with public officials to aid in their decision to implement the forecast, and

(iii) implementation decisions, in turn, would hinge on a majority rule for the preferred

forecast version (including no new system). In the same vein, we stressed that payment

in form of additional taxes would be mandatory and binding for all residents of the 5CR

for as long as they lived in the region, regardless of their vote, should the new system be

implemented. By the same token, respondents were reminded that the new system, once

activated, would be accessible to all residents of the research area, regardless of their original

vote. As discussed in Vossler et al. (2012) and Johnston et al. (2017), the combination of

assuring consequentiality of voting, ideally via a majority rule, and a credible and binding

payment mechanism are essential to avoid “free-riding” and to induce truthful preference

14The full survey instrument is available from the authors upon request
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revelation.

Furthermore, we mitigate against potential sequencing effects, i.e. undesirable and

unobservable influences of earlier choice sets and votes on decisions for subsequent sets for a

given individual, by making choice sets “visible” as recommended in Johnston et al. (2017).

This entails a verbal preview of the choice tasks to follow, and a reminder to treat each set

as fully independent and the only options available on a given voting occasion. In addition,

we rotated choice sets across sub-sets of respondents within each block, such that each of the

four sets per block had an equal chance to be seen first by a given participant. This provides

the option to estimate the full econometric model using only “first-set” observations, which

by construction circumvents any potential sequencing effects.

To counter any perceptions best responses or social norms for selecting a forecast option

we assured respondents that there are good reasons for different people to choose different

options, and that every vote is legitimate, regardless of the chosen alternative.15 In the

same vein, to induce financial discipline, we reminded survey participants of the budget

tradeoffs implied by their vote, potentially leaving less money for other private expenses or

public contributions.

Lastly, we follow recommendations in Krupnick and Adamowicz (2007) and Johnston

et al. (2017) and collect additional responses at the end of survey section three related

to participants’ perceptions of (i) the quality and usefulness of background information

provided, (ii) the realism and consequentiality of the voting environment, and (iii) freedom

to form their own opinion and make their own voting decision. As described below in more

detail, we use results from these questions in conjunction with flagged protest votes to

identify valid observations that are suitable for econometric estimation.

Survey implementation

The survey questionnaire was pretested online in May 2020, using the original focus group

participants as test sample. All 27 individuals provided responses. This led to minor

15Mitchell and Carson (1989) refer to such unintended predisposition of respondents towards specific
responses as “implied value cues,” and list these as one of the main sources of potential bias in stated
preference research.
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modifications in the questionnaire, but generally provided evidence that the background

information was clear, the choice tasks were well understood, survey length was appropriate,

and the price / bid amounts in the choice sets were within reasonable range.

The final survey was administered online by a professional polling firm (Qualtrics) be-

tween June and September 2020. Respondents had to be at least 18 years of age and

permanent residents of the 5CR. Each participants had to agree to an informed consent

form prior to accessing the questionnaire, in accordance with VT IRB regulations. Survey

participants were recruited from several “opt-in panels” accessible to the firm. To assure

representativeness of the resulting sample of participants relative to the underlying target

population, the sample was stratified according to predetermined age and income groups,

as well as the presence of children under the age of 18, based on official census data for the

5CR. Participants received monetary compensation of undisclosed magnitude. The survey

firm provided initial quality control by screening out individuals that skipped 10% or more

of the survey questions or completed the survey in a time less than 50% of the sample me-

dian. This figure, in turn, was derived from an initial “soft launch” involving 50 individuals

to verify correctness of the underlying survey architecture, such as randomization patterns

and linked follow-up questions.16

Results

Descriptive statistics

The survey generated 502 properly completed questionnaires, slightly exceeding our target

sample of 500. Basic sample demographics are given in table 2. As is evident from a

comparison of the first and last column of the table, our sample matches up reasonably well

with official population demographics for the 5CR, albeit with a slightly larger contingent

of females, individuals age 65 or older, and higher proportions of residents with at least a

high school or bachelor degree, respectively.17

16This initial test sample was not used in final analysis.
17These deviations from census figures mirror those reported by Morgan et al. (2010) for their 2001 survey

of 1006 randomly selected Manatee and Sarasota households to study a variety of impacts of RT on the local
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The table also shows that the average respondent has lived within the 5CR for over 14

years, close to nine of those at the current address. We can therefore expect our sample to

be quite familiar with topics related to RT. Approximately 23% of surveyed households have

children age 18 or younger, and a sizable share (close to 29%) comprise family members

with pre-existing respiratory conditions.

The survey asked respondents about their participation in 11 designated outdoor activ-

ities (plus an “other” option) over the past 12 months, ranging from a variety of land and

water recreational activities, to school- or work-related time spent outdoors. A follow-up

question then elicited the total number of hours spent on each activity by all household

members in a typical week without any RT problems. Table 3 captures responses to the

participation question. As is clear from the table, a large majority of residents (over 88%)

spend some time outside over the course of a year, with the highest percentages observed

for beach recreation (close to 73%), followed by trail or road endeavors such as jogging and

biking (close to 58%), and water activities other than boating (approximately 57%). Fur-

thermore, over 13% of the sample spends time outdoors as part of their work or volunteer

engagements.

Table 4 summarizes actual time spent outside per week, summed over all household

members. The first four columns of the table show the share of households that fall into

the time bracket given in the row header. For example, over 45% of households spend

between one and four hours on the beach in a given week, over 13% clock between five and

eight beach hours per week, and over six percent enjoy the beach for nine hours or more.

The last column of the table gives the total number of hours per activity, averaged across

households, and using category midpoints.18 We find that the average five-county household

spends close to 17 hours per week on the listed activities, across all its members. The largest

shares of this total go to trail or road activities (2.73 hours), and beach time (2.70 hours),

with the remaining activities distributed across the 0.6 to 1.5 hour/week range.

The survey also inquired about time spent in outdoor areas around the house, such as

population.
18Specifically, the category of 1-4 hours was recoded to 2.5, the 5-8 hour bracket was recoded to 6.5, and

so on. The highest category of >12 hours was conservatively coded as a flat “12.”
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balcony, deck, or yard. As can be seen from the last row of the table, all but eight percent

of households spend at least some time in these locations, with the sample average emerging

as close to 17 hours/week. Adding “near home” to “away from home” outdoor time, we

find that the typical five-county household spends close to 25 hours outside in a given week.

This stresses the importance of outdoor time to the local population, but also its ex-ante

susceptibility to RT aerosol exposure during a bloom.

This is confirmed by the next block of questions, which inquired about personally ex-

perienced RT air contamination effects and mitigating actions taken during a household’s

residential tenure in the 5CR. Responses are summarized in table 5. As captured in the last

column of the table, a majority of households (approximately 57%) had to cancel, postpone,

or shorten outdoor activities away from home at least occasionally during past blooms, and

over 47% were forced to re-locate a planned outdoor event.19 Over 40% of respondents

have been impacted in similar fashion with respect to outside activities around the house.

In terms of direct health effects, close to 58% have experienced some respiratory irritation

due to RT in the past, with over 11% of residents affected to a severe degree. We also note

that a non-negligible share of respondents (three to nine percent) report being impacted

virtually every day during a bloom in different ways, with over three percent suffering from

severe irritation on a daily basis. A large share of households (over 48%) also indicate that

they have been adversely affected by the odor of decaying fish killed by RT.

The last block of rows in the table captures other, perhaps less obvious RT effects that

were mentioned during focus group sessions. These include cancellation of visits by family

and other out-of-town guests (with over 30% affected to at least some degree in the past),

inability to open windows in homes and vehicles (49%), problems letting pets out to play

or exercise (over 19%), and even experiencing RT toxins that penetrated through a home

or vehicle’s climate control system (27%).

Additional, more profound and pervasive actions taken by some households are summa-

rized in table 6. As can be seen from the table, a considerable share of respondents, over

19In comparison, Morgan et al. (2010) find RT impacts of comparable magnitude for a 2001 sample of
576 beach-going residents of Sarasota and Manatee counties, 70% of whom report having been forced to cut
short, delay, or re-locate outings in the preceding 12 months.
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18%, actually moved away from the coast to escape RT effects during the time they have

lived in the 5CR. In addition, five to six percent of survey participants report having sold

a boat or other water sport equipment, having recently put their house or condominium on

the market in an effort to move out of the area, and / or changed their job or retired early

in reaction to RT air contamination.

In sum, this section of our survey demonstrates clearly and quantitatively that a large

share of southwest Florida residents have been negatively affected by RT air contamination

in the past. These effects manifest themselves in a variety of ways, from interference with

outdoor activities, to causing health problems and serious economic consequences, such

as forcing residents to move away from the coast, or make career changes. Given locals’

pronounced preference for outdoor time, and the many avenues RT interferes with residents’

everyday life, we would ex ante expect strong demand for a spatially and temporally refined

RT air quality forecasting system, such as described above. This is confirmed by our analysis

of the choice experiment data as discussed below in more detail.

The survey also asked about respondents familiarity with existing RT information

sources as described above, after describing them in detail and providing web links for

further information. As summarized in the first column of table 7, between one third and

one half of sampled households are unaware of MML’s BCRS (Mote Marine Laboratory &

Aquarium, 2020), Florida Fish & Wildlife Conservation Commission’s RT Current Status

web site (Florida Office of Economic & Demographic Research, 2020), and NOAA’s Harmful

Algal Bloom forecast (National Oceanic and Atmospheric Administration, 2020), respec-

tively. Another 30-35% of respondents have heard of these sources, but have not used them

in the past. This leaves approximately 27% who actually access the BCRS and FWC sites,

respectively, with a slightly smaller contingent (close to 22%) visiting NOAA’s HAB site at

least on few occasions per month. In terms of usage frequency, 12-16% of the entire sample

consults these sites one to four days per month, while eight to then percent tap into these

sources between five and 20 days / month, and a small contingent (one to two percent) rely

on these information sources almost daily. In general, there appears to be room to boost

public use of online sources related to RT current conditions and forecasts. The envisioned
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new system with its refined spatial and temporal forecasting features may be well suited to

increase information uptake.

All 502 participants completed all four of their assigned voting questions. Overall, 386

survey takers opted for the new system on at least one occasion, providing the following

reasons for their vote: Lowered risk of exposure to RT air toxins (54%), ability to spend more

time outdoors (32%), ability to better plan for outdoor activities (56%), ability for better

timing of outdoor activities (52%), and ability to make better location choices for outdoor

endeavors (51%). On the flip side, 134 (close to 27%) of respondents chose the SQ option of

“no new system,” that is existing information sources at zero cost on all four occasions. Of

those, we identify 100 cases (close to 20% of the total sample) as “protest responses,” given

their follow-up rationale for serial SQ voting as one or more of the following: “The new

system should be provided by the government at no cost” (60%), “the new system should

be covered from existing taxes and fees” (40%), “the new system will slow down other RT

efforts” (8%), and “I do not believe the new system is scientifically feasible” (6%).

Additional invalid observations were identified via the end-of-section auxiliary questions

given to all respondents. Results from these seven-tiered Likert-style questions are shown in

table 8, with original response categories “strongly disagree, disagree, and “somewhat dis-

agree” compiled into a single “disagree to some extent” category. An analogous aggregation

was performed on the “agree” side of the response spectrum. As is evident from the table,

the vast majority of participants felt that the survey information was useful and sufficient

for decision-making, showed confidence in their votes, confirmed their perceived realism of

the voting occasion, and did not feel coerced into voting one way or other. We flag the

“disagree” responses to the voting realism and absence-of-coercion questions as invalid ob-

servations for subsequent analysis. Since three of these 37 cases were also protest responses,

we retain a valid sample of 368 individuals for final analysis. With each person provid-

ing four voting responses, this translates into 1472 effective observations for econometric

processing.
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Estimation results

Estimation of the CL model requires the exact specification of the forecast attributes “spatial

coverage” (band), “accuracy for the first 12 hours ” (acc1), and “accuracy for the second 12

hours” (acc2), as well as the stipulated price (bid). We opt to express attributes as binary

indicators for each level beyond the lowest setting, while treating the bid variable as a single

(pseudo-) continuous regressor. As discussed in Henscher et al. (2005) and Holmes et al.

(2017), this ex ante allows for potential nonlinear attribute effects, which are confirmed by

our estimation results. The implicit baseline scenario is thus a forecast system with band

with of six miles and 50% accuracy throughout. In accordance with equation (2) we enter

bids as positive amounts, which implies that the marginal-utility-of-income parameter λ is

estimated with reversed sign.20

We choose a multivariate normal prior for coefficient vector β with a mean vector of

zero and a diagonal covariance matrix with all variance terms equal to 100. This extremely

vague prior places the bulk of informational burden on the data, as desired. For the MH step

in the draws of β we set the scalar for the variance matrix in the multivariate-t proposal

density τ to unity, and the degrees of freedom parameter ν to equal 30. These settings

yield relatively high acceptance rates (70-75%) while keeping autocorrelation across draws

at reasonably low levels.

In all cases, we use Geweke’s (1992) split-mean diagnostics to assess convergence. This

led to a choice of 150,000 - 200,000 burn-in draws depending on model. In addition, we keep

track of autocorrelation via Inefficiency Factors (IEFs), as suggested in Chib (2001). For all

estimation runs, IEF scores remain in the one to five range, suggesting acceptably low levels

of autocorrelation. In all cases, we retain 100,000 parameter draws for final inference.21

Primary estimation results are given in Table 9 for both the full model using all choice

sets (columns two to four) and the restricted model using only the choice set encountered

first by a given respondent (columns five through seven). For each model the table gives the

20We also considered the inclusion of two-way interactions between attribute levels. However, these
emerged as highly insignificant, and are thus omitted in our final specification.

21Estimation was performed using Matlab on a single Intel Xeon Gold 6136 3.00GHz processor. Run times
ranged from 20 to 30 minutes, depending on model.
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posterior mean, posterior standard deviation, and the proportion of the posterior distribu-

tion to the right of zero (p > 0). The latter statistic provides an at-a-glance assessment if a

given variable’s effect on outcome is predominantly positive (p > 0 is close to 1), negative

(p > 0 is close to 0), or ambiguous (p > 0 is close to 0.5). The more posterior mass to one or

other side of zero, the clearer is the signal for the direction of the effect of the corresponding

coefficient.

The first column of the table lists the estimated coefficients. Recall that the implicit

baseline scenario is a forecast with band width of six miles, and 50% accuracy for both

the first and second 12-hour time window. Considering first the “all sets” model, we find

that respondents overall strongly prefer even the least extensive and accurate new system

over what is currently in place, as is evident from the numerically large and unambiguously

negative sign of the “SQ” indicator. There is also considerable evidence that a 12-mile

band is preferred to the six-mile version (with 87% of the posterior distribution of the cor-

responding indicator in the positive domain), and compelling evidence that higher accuracy

for the first 12 hours is valued more highly than lower accuracy, ceteris paribus. The same

holds for the second 12-hour time segment for the 75% accuracy indicator, while no clear

signal emerges for the 100% level, with the corresponding posterior distribution centered

close to zero (p > 0 = 0.48). It is possible that this reflects some degree of doubt that such

a flawless forecast this far out is actually feasible. On the other hand, and given the larger

coefficient estimates for the acc1 indicators compared to their acc2 counterparts, this lack

of “significance” (in slight abuse of classical terminology) may simple be indicative that

accurate near-time forecasts are valued more highly than accuracy for time slots further

into the future. The last row of the table summarizes the posterior distribution of the price

coefficient. Reassuringly, this distribution is tightly centered around a distinctly negative

mean, as dictated by economic theory.

The second set of columns in table 9 give analogous results for the “first-set-only” model.

As expected, with a 75% reduction in sample size (from 1472 to 368 observations) this

model produces higher posterior standard deviations, and less discerning p > 0 statistics.

Nonetheless, the salient estimation patterns observed for the full model remain: A distinctly
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negative coefficient for the SQ indicator, clear preference for higher accuracy for the first

12 hours, and a clearly negative price coefficient, with almost identical posterior mean as

for the “all sets” model. We take this as indication of the absence of serious bias induced

by any sequencing effects in the full model.

Value predictions

Following the econometric steps outlined above, the posterior distribution of the estimated

coefficients was combined with all 18 possible combinations of settings for bandwidth and

accuracy to generate posterior predictive distributions of WTP for each forecast scenario.

Results are captured in table 10 for both the full and the first-set-only model. For each

version the table shows the posterior predictive mean, as well as the lower and upper

bound of the corresponding highest posterior density interval.22 As is evident from the

table, posterior means are generally comparable between the two model versions, with the

restricted model exhibiting wider HPDI ranges due to the substantially diminished sample

size, as expected.

Focusing on the full model as our overall preferred specification, we observe that the

typical five-county household is willing to pay over $17 per year for even the least refined

forecast version with a six-mile band and only 50% accuracy for both 12-hour segments.

This estimate increases to as much as $40-$45 per year for forecasts with higher accuracy,

especially for the first 12 hours. Aggregating these figures over the approximately 835,000

households in the five-county-area, this translates into an estimated WTP of $14.5 million

per year for the most basic system.23

Since the survey made it clear to respondents that the tax increases to support the new

system would have to be paid every year as long as they lived in the region, the discounted

value of these annual estimates can be unambiguously added over future years for any time

22As described inter alia in Koop (2003) the α-% HPDI is the smallest interval over the range of a given
distribution that includes α % of the density mass. It is a common Bayesian statistic used to describe the
spread of a given distribution, and/or confidence bounds for a given parameter of predictive construct of
interest.

23The lower end of our value range mirrors the estimate of $16 per household and year found by (Lazo and
Chestnut, 2002) for the U.S. population at large for comparable improvements in weather forecasts offered
by the National Weather Service.
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window of interest to derive a net present value of forecast benefits. This figure in turn,

can then be compared to the immediate costs of implementing the system, plus annual

maintenance expenses, to determine if the new system would generate positive net benefits

to the underlying population for the targeted time horizon.

Conclusion

We implement a survey-based choice experiment to estimate benefits to the residential

population of five southwest Florida counties of improved near-term forecasts for air quality

levels associated with blooms of RT. We consider this both a practical and feasible approach

to obtain these values, given the many ways in which airborne red tide irritants can interfere

with human activities and choices, and the corresponding multitude of potential mitigating

actions - as also confirmed by our survey. Understanding these benefits, in monetary terms,

is essential to determine the optimal allocation of resources for the provision of these services.

We find that annual benefits are of substantial magnitude, even for the least accurate

and spatially extended version of our forecast scenarios. This suggests a real potential

to reduce economic losses associated with RT blooms by refining existing RT information

sources. Naturally, a more conclusive determination of societal net benefits should be based

on comparing the discounted net present value of benefit streams to the near-term and

future costs of implementing this service over the time horizon considered by the policy

maker. Our benefit estimates form an important input to this process. Our proposed

Stated Preferences framework for the estimation of economic benefits of improved air quality

forecasts is directly applicable to other HAB types that generate airborne toxins, and, more

generally, any type of air quality problem with human exposure, adding to the paucity of

work on this topic.

Naturally, some caveats are in order regarding our empirical findings and their inter-

pretation. First, our forecast scenarios are restricted to deviate in accuracy by no more

than one irritation level in either direction. It is possible that forecasts with “really bad

errors” would be valued at lower levels by stakeholders. In that sense, our estimates might
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be considered upper bounds for more error-prone forecast versions. By the same token, the

benefits we derive are likely conservative lower bounds for the full value of the envisioned

forecast system to all stakeholders in the 5CR, such as businesses with outdoor seating,

outfitters and charter companies, and event planners that rely on outdoor venues. Extend-

ing this work to include some of these other sectors of the affected population would be a

fruitful extension of this research. We also note that the upper end of our estimates for a

perfectly accurate forecast can be interpreted as - likely very conservative - lower bounds

of the actual annual costs of RT blooms to the surveyed population, as mitigating impacts

with the help of better forecasts will lower, but certainly not erase all costs caused by RT.

On a final note, our proposed forecast was designed to provide an intuitive, user-friendly

information environment for human decision-making. From a scientific perspective, the path

to its implementation still presents numerous challenges, such as fully understanding the

production and movement of Karenia brevis in the ocean and air, as well as the aerosoliza-

tion processes of cells and toxins under varying environmental conditions. In that sense,

our results stress the potential benefits to the local population of further investing in these

scientific endeavors.
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Figure 1: Spatial snapshots of the new forecasting system at different points in time for a
given calendar day (1 square mile grid)
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Figure 2: Example of square-specific forecast

33



Figure 3: Overview of spatial coverage levels

Figure 4: Examples of spatial coverage levels
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Figure 5: Example of forecast accuracy

Figure 6: Choice set example
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Table 1: Attributes and levels

attribute description level settings

spatial
coverage
(”band”)

width of coverage band along five-county coast,
miles

6, 12

accuracy,
first 12

hrs

% of correctly forecasted hourly irritation levels
out of 12, first 12 hours counting from most

recent update

50, 75, 100

accuracy,
second 12

hrs

% of correctly forecasted hourly irritation levels
out of 12, second 12 hours counting from most

recent update

50, 75, 100

price
(”bid”)

annual tax per household $5, $15, $25, $35

Table 2: Sample demographics

demographic % mean std min max obs. census*

respondent-specific:
female 59.76% 502 51.37%

age 56.35 17.85 18 92 502
18-34 15.94% 19.38%
35-64 40.43% 42.69%
65+ 43.63% 37.93%

HS diploma or higher 97.61% 502 89.58%
BA or higher 46.22% 502 30.97%

502
years lived at current address 8.74 8.10 0 47 502
years lived in current county 14.15 11.93 0 50 500
years lived in 5-county region 14.73 12.38 0 62 501

HH-specific:
HH size 2.27 1.25 1 14 501 2.29

family members under age 7 7.77% 0.16 0.76 0 11 502
family members 7-18 14.74% 0.25 0.74 0 6 502 17.09%**

family members with respiratory conditions 28.86% 0.38 0.70 0 5 499
HH income <$50,000 36.06% 41.78%
$51,000 - $100,000 39.04% 31.48%
$101,000 - $150,000 14.74% 13.99%
$150,000 - $200,000 4.98% 5.49%

>$200,000 5.18% 7.25%

*source: Florida Office of Economic & Demographic Research
**% of households with children < 17 years of age
N = 502
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Table 3: Participation in outdoor activities, past 12 months

% of respondents
activity yes no not sure

beach activities (walking, jogging, etc.) 72.71 26.29 1.00
water activities (swimming, snorkeling, etc.) 56.57 42.23 1.20

non-motorized water sports (kayaking, SUP, etc.) 21.91 76.49 1.59
motorized water sports (boat, jet-ski, etc.) 25.50 72.71 1.79

fishing / harvesting 28.69 69.32 1.99
outdoor sports (participant or spectator) 30.28 67.93 1.79

outdoor school activities (participant or spectator) 12.95 84.86 2.19
trail / road activities (jogging, biking, etc.) 57.97 40.04 1.99

park / picnic activities (BBQ, gatherings, etc.) 49.00 49.20 1.79
special outdoor events (participant or spectator) 47.21 51.20 1.59

professional or volunteer outdoor activities 13.35 84.66 1.99
other 4.58 80.68 14.74

any outdoor activity 88.05

SUP = stand-up paddleboarding
BBQ = barbecueing
N = 502

Table 4: Time spent outside, typical week

hours per week
activity 0 1-4 5-8 9-12 >12 / 13-24 >24 tot. hrs.

% of respondents
beach activities (walking, jogging, etc.) 35.06 45.42 13.35 2.99 3.19 2.70

water activities (swimming, snorkeling, etc.) 44.42 42.23 9.16 2.19 1.99 2.12
non-motorized water sports (kayaking, SUP, etc.) 77.49 16.33 3.98 1.39 0.80 0.91

motorized water sports (boat, jet-ski, etc.) 76.29 16.53 4.38 2.19 0.60 1.00
fishing / harvesting 71.91 22.51 3.19 1.20 1.20 1.04

outdoor sports (participant or spectator) 67.93 20.32 5.58 3.19 2.99 1.56
outdoor school activities (participant or spectator) 83.86 10.56 3.59 1.39 0.60 0.72

trail / road activities (jogging, biking, etc.) 37.25 40.24 16.73 3.78 1.99 2.73
park / picnic activities (BBQ, gatherings, etc.) 55.18 38.65 4.18 1.99 0.00 1.45

special outdoor events (participant or spectator) 62.35 33.07 3.19 1.20 0.20 1.18
professional or volunteer outdoor activities 84.26 10.96 3.59 0.60 0.60 0.64

other outdoor activities 91.63 3.19 1.59 1.39 2.19 0.59

all outdoor activities 16.64

balcony, deck, yard 8.17 31.47 22.51 17.33 13.15 7.37 8.21

SUP = stand-up paddleboarding
BBQ = barbecueing
tot. hrs. = total hours/week across all activities using category midpoints, averaged across households
N = 502
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Table 5: RT air quality effects experienced since living in research area

almost can’ recall /
effect never sometimes often daily N/A affected

outdoor activities: % of respondents
cancel / postpone 35.06 40.04 8.57 7.97 8.37 56.58

shorten 35.06 39.84 8.76 8.96 7.37 57.56
re-locate 44.82 30.88 8.76 7.57 7.97 47.21

around house outside activities:
cancel / postpone 53.98 29.68 6.77 3.98 5.58 40.43

shorten 50.20 29.88 7.97 5.38 6.57 43.23

health effects:
irritation (but no doctor) 37.05 40.84 9.56 7.57 4.98 57.97
severe irriation, see doctor 82.07 6.37 1.79 3.39 6.38 11.55

bothered / sickened by dead fish smell 45.62 32.87 10.76 4.78 5.97 48.41

other effects:
guests cancelled visits 60.16 22.71 5.18 2.19 9.76 30.08

unable to open windows (home or car) 45.42 30.08 9.36 9.56 5.57 49.00
unable to let pets out 58.37 10.36 4.98 3.98 22.31 19.32

toxins enered home / car via A/C system 61.55 19.32 4.38 3.39 11.36 27.09

N/A = not applicable
N = 502

Table 6: Additional actions taken in response to RT

can’ recall /
action yes no N/A

% of respondents
moved away from coast 18.33 65.54 16.13

sold boat / water sport equipment 6.57 67.33 26.09
put house / condo on market 5.78 75.9 18.32
changed job / retired early 6.37 74.3 19.32

N/A = not applicable
N = 502
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Table 7: Awareness and usage of existing RT online sources

heard / used useage frequency (days /month)
source no / no yes / no 1-4 days 5-10 days 11-20 days 21-30 days some use

% of respondents
Mote’s BCRS 42.43 30.88 16.33 5.98 2.59 1.79 26.69

FWC’s RT web site 37.85 34.86 15.94 5.78 3.78 1.79 27.29
NOAA’s HAB forecast 45.22 33.27 12.35 4.58 2.99 1.59 21.51

BCRS = Beach Conditions Reporting System
FWC = Florida Fish & Wildlife Conservation Commission
RT = RT
NOAA = National Oceanic and Atmospheric Administration
HAB = Harmful Algal Bloom
N = 502

Table 8: Validity check questions

disagree to neither agree generally
some extent nor disagree agree

% of respondents
survey information / complexity:

survey provided enough information 5.38 7.77 86.85
information was easy to understand 9.16 9.96 80.88
information was fair and balanced 4.18 13.75 82.07

info on existing RT sources was sufficient 6.18 10.16 83.67
choice questions were easy to answer 4.18 9.16 86.65

voting realism / consequentiality:
feel confident about my vote 4.38 10.36 85.26

would vote the same way in a public referendum 2.59 11.55 85.86
voted as if costs were real 3.19 8.96 87.85

perceived coercion:
survey let me make up my own mind 3.59 9.16 87.25

RT = RT
N = 502
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Table 9: Estimation results

all sets first set only
variable mean std. p(> 0) mean std. p(> 0)

SQ -0.803 0.114 0.000 -1.053 0.216 0.000
band=12 0.110 0.100 0.866 0.049 0.200 0.595

acc1 = 75% 0.265 0.144 0.968 0.304 0.279 0.860
acc1=100% 0.942 0.166 1.000 1.091 0.330 1.000
acc2=75% 0.223 0.101 0.987 -0.106 0.207 0.308
acc2=100% -0.007 0.138 0.479 -0.339 0.277 0.111
price (bid) -0.047 0.005 0.000 -0.049 0.010 0.000

all sets = full valid sample (N=368, n=1472)
first set only: N=n=368
mean = posterior mean / std. = posterior standard deviation
(p > 0) = proportion of posterior distribution exceeding zero

Table 10: WTP estimates ($’s per HH and year)

forecast scenario all sets first set only
band acc.1 acc.2 mean low high mean low high

6 50 50 17.37 11.61 23.08 22.36 10.50 35.79
6 50 75 22.19 14.55 30.41 20.08 5.38 36.56
6 50 100 17.21 8.84 25.82 15.05 -1.73 31.15
6 75 50 23.01 17.71 28.45 28.45 16.76 41.20
6 75 75 27.83 22.21 34.21 26.17 14.42 38.43
6 75 100 22.86 16.00 29.71 21.14 8.39 35.30
6 100 50 37.52 32.03 43.44 44.66 32.35 59.71
6 100 75 42.34 36.30 48.92 42.38 30.24 55.63
6 100 100 37.37 31.67 43.24 37.35 26.67 49.03

12 50 50 19.62 14.58 24.78 22.83 12.48 33.14
12 50 75 24.44 17.53 31.46 20.55 6.62 33.95
12 50 100 19.47 11.54 27.73 15.52 -0.88 31.00
12 75 50 25.26 20.07 30.33 28.92 18.59 39.92
12 75 75 30.08 25.00 35.09 26.64 16.79 36.86
12 75 100 25.11 18.44 31.72 21.62 8.20 35.13
12 100 50 39.78 34.68 44.97 45.13 33.78 56.86
12 100 75 44.60 39.65 49.85 42.85 32.67 52.76
12 100 100 39.62 34.48 44.98 37.82 27.73 48.37

all sets = full valid sample (N=368, n=1472)
first set only: using only first choice set shown to respondent (N=n=368)
mean = posterior mean
low [high] = lower [upper] bound of 95% highest posterior density interval
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