
TIPS FOR CREATING AND PUBLISHING WEB SITES USING DISTILL FOR

R AND GITHUB

1. Downloading Rstudio and creating a new R-project

The following is based on instructions given at: websites with distill.

(1) Download the latest version of Rstudio here: rstudio download.
(2) Open Rstudio and install the distill package by typing “install.packages(”distill”)”
(3) In Rstudio, select “File/New Project/New Directory/Distill Website” (you will need to

scroll down a bit). Enter a directory name, say “MyCoolWebsite”, and a file path under
“create project as subdirectory of”, say c:\webDesign (make sure this folder already
exists ...). Enter a Title - e.g. “KM start”. IMPORTANT: select the box:
“customize for GitHub pages”. Select “create project.”

This will open three tabs in Rstudio: “index.Rmd,” about.Rmd,” and site.yml. The first two are
your first web pages, the third is the navigation file that shows how all these pages are linked.
You can immediately take a first look at your new web site by selecting “Build” in the upper
menu bar to the RIGHT, and “Build website.” You can repeat this everytime you change
something in your local web environment.
If you look in the lower right hand window, you can see that Rstudio created a “docs” folder that
now includes all your translated html files. This is the folder you can ultimately link to a web
service for publishing, as described below.

2. Customizing your web site

2.1. The site.yml navigation file. Your site.yml file shows the general outline of your web
environment, such as all of YOUR web pages that are linked to your home page. To avoid issues
publishing your site in GitHub, make sure output directory is set to: outpu dir: “.” as mentioned
before.
After adding a few linked pages and drop-down menus, my “ site.yml” file currently looks like this:

1

https://rstudio.github.io/distill/website.html
https://www.rstudio.com/products/rstudio/download/

2

2.2. The styles.css style file. As shown in the last line of site.yml, I added my own style file
“styles.css” to modify the default theme. To create this style file in RSTudio, I chose “File/new
text file” and saved it to my root folder (here: “MyCoolWebsite”) with the .css suffix. Here is
what mine looks like at this point:

3

You may want to experiment with additional styling. I found the following web sites helpful:
color codes for CSS: CSS colors
CSS reference guide: https://www.w3schools.com/cssref/default.aspCSS reference

2.3. Creating and filling web pages. Initially, you will have two pages by default, your home
page, called “index.Rmd” (never rename that one!!!), and an “about” page which you can delete,
rename, or fill / edit. Both files will have a default title section and a bit of R Knit-r code -
essentially the same as Sweave, in case you want to add actual R code. You can edit the title
section as needed, and ignore or delete the Knit-r stuff.
Basically, each page is an individual “markdown” file, that can combine a variety of different
elements into a unified document. Here are some helpful web sites for filling / editing markdown
pages:
Markdown cheatsheet markdown cheatsheet
Similar: more markdown tips
This is what my index.Rmd file looks like at this point:

4

https://www.rapidtables.com/web/css/css-color.html
https://www.w3schools.com/cssref/default.asp
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://daringfireball.net/projects/markdown/syntax#list

5

If you want links in your web pages to images, you need to first create an “images” folder in your
root directory. Place all images in there (jpg is OK, other formats probably as well). Then
reference the image in the body of your page script as “![image label](images/imagename.jpg).”
Similarly for any other linked file, create a “files” folder in your root directory (here you have
flexibility in labeling), and put the files in there. For example, I created a “CVs” folder that will
contain my current CV. I could then directly call it in the body of a page script as
[**CV**](CVs/moeltnerCurrentCV.pdf) (The ** ** give boldface). In my case I preferred to link
my CV directly in the main meu bar. This requires a direct insert in your site.yml file:

- text: "CV"

href: CVs/moeltner_CV_Oct7_2019.pdf

If you want to add a footer area to your pages, you need to create a separate “footer.html” file by
selecting File/New File/R HTML. Place this file also into your root directory. For my footer, I
just added a few links to different web pages:

[Department faculty page](https://aaec.vt.edu/people/faculty/moeltner-klaus.html)

  <!-- adds a tab -->

 

[Global Change Center page](https://www.globalchange.vt.edu/dr-klaus-moeltner/)

 

 

[Coastal @ VT page](https://fralin.vt.edu/Centers/coastal.html)

My full folder environment at this point (note: .Rhistory and .Rproj.user are automatically
generated when you create your new project):

6

7

3. Publishing your web site

Note: this follows the instruction given at
publish at Github.

(1) In your site.yml file, make sure output directory is set to: output dir: “.” as mentioned
before.

(2) Create a new account at github.com.
(3) Download GitHub, whichever version fits your PC. I have “Github for desktop.”
(4) Sign in with the user name and password you created in step (1). (OK to acknowledge the

“commit” message).
(5) On the “Let’s get started” page, select “create repository on your hard drive”. For

“name,” enter username.github.io, where “username” is exactly the user name you
chose when you created your GitHub account. Under “local path” choose an empty folder,
perhaps also in your “webDesign” folder, so right next to the “MyCoolWebsite” folder.
Let’s call it “GitHubStuff” for now. Leave everything else as-is and click “Create
Repository.” This will create a new folder called “username.github.io” under your
“GitHubStuff” folder.

(6) Now copy all files from your “MyCoolWebsite” folder to the “username.github.io” folder.
(7) When you click on the Github, you should now see all your files. Add a few words under

“Summary” (i.e. “my first commit”), ans click “commit” (this just means you are happy
with all the files currently in you repository). All your files will disappear - that’s OK.

(8) Click the “publish repository” button in the top menu bar of the Github interface. (you
may be prompted to sign in again). In the “publish repository” dialog window, de-select
“keep this code private.” Click “publish repository.”

(9) You can now view all your files in the actual Github repository at
“https://github.com/username/username.github.io” if you wish (click on “View on

Github” in the right pane of the Github app).
(10) More importantly, your new web site should now be visible at https://username.github.io

(just type “username.github.io” in a new browser window).

4. Editing your web site

(1) Make any changes and edits to your web environment in Rstudio - this will change things
in your local “MyCoolWebsite” folder.

(2) Copy all changed files / elements to your “username.github.io” folder.
(3) Open the Github app / program. Sign in if prompted. You should see the new file(s) in

the left bar.
(4) Click “Commit to master” as before. Then “push origin” in the right pane.

5. Deleting your GitHub repository

If you need to make a fresh start or no longer want your stuff on GitHub, you can go to
“https://github.com/username/username.github.io”, Settings/ scroll down to “Danger Zone”,
“Delete this repository.”

8

https://medium.com/@svinkle/publish-and-share-your-own-website-for-free-with-github-2eff049a1cb5

	1. Downloading Rstudio and creating a new R-project
	2. Customizing your web site
	2.1. The _site.yml navigation file
	2.2. The styles.css style file
	2.3. Creating and filling web pages

	3. Publishing your web site
	4. Editing your web site
	5. Deleting your GitHub repository

